IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp1186-1202.html
   My bibliography  Save this article

A techno-environmental assessment of hybrid photovoltaic-thermal based combined heat and power system on a residential home

Author

Listed:
  • Erixno, Oon
  • Rahim, Nasrudin Abd

Abstract

This paper provides energy, exergy and environmental analyses for hybrid photovoltaic-thermal based combined heat and power system. Grid-connected configuration was used to increase the system reliability when satisfying the load. A series of battery and hot-water storages were applied for saving the excess of electricity and heat, respectively. Technical evaluations were conducted based on experimental data using real-time measurement devices throughout 31 days and estimated annual energy generation. The results showed that the average of electrical energy, thermal energy, electrical exergy and thermal exergy generations in a day were 0.34 kWh/m2, 0.60 kWh/m2, 0.34 kWh/m2, and 0.01 kWh/m2 per day, respectively with the solar irradiation average of 3.25 kWh/m2 per day. The maximum efficiencies of electrical energy, thermal energy, electrical exergy, and thermal exergy generations were 16.73%, 51.09%, 16.73% and 0.85%, respectively. This research also found the electrical and thermal energy efficiencies of the system were degraded by 1.20% and 1.89% per year, respectively. The system reduced the carbon dioxide emission annually by 855.1 kg per year or approximately 26.75% lower than a conventional separated system.

Suggested Citation

  • Erixno, Oon & Rahim, Nasrudin Abd, 2020. "A techno-environmental assessment of hybrid photovoltaic-thermal based combined heat and power system on a residential home," Renewable Energy, Elsevier, vol. 156(C), pages 1186-1202.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:1186-1202
    DOI: 10.1016/j.renene.2020.04.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120306339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramadhani, Farah & Bakar, Kamalrulnizam Abu & Hussain, M.A. & Erixno, Oon & Nazir, Refdinal, 2017. "Optimization with traffic-based control for designing standalone streetlight system: A case study," Renewable Energy, Elsevier, vol. 105(C), pages 149-159.
    2. Shehadeh, Shadi H. & Aly, Hamed H. & El-Hawary, M.E., 2019. "Investigation of photovoltaic coverage ratio for maximum overall thermal energy of photovoltaic thermal system," Renewable Energy, Elsevier, vol. 134(C), pages 757-768.
    3. Wang, Kai & Herrando, María & Pantaleo, Antonio M. & Markides, Christos N., 2019. "Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres," Applied Energy, Elsevier, vol. 254(C).
    4. Mishra, G.K. & Tiwari, G.N., 2020. "Performance evaluation of 7.2 kWp standalone building integrated semi-transparent photovoltaic thermal system," Renewable Energy, Elsevier, vol. 146(C), pages 205-222.
    5. Frangopoulos, Christos A., 2012. "A method to determine the power to heat ratio, the cogenerated electricity and the primary energy savings of cogeneration systems after the European Directive," Energy, Elsevier, vol. 45(1), pages 52-61.
    6. Pearce, J.M., 2009. "Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems," Energy, Elsevier, vol. 34(11), pages 1947-1954.
    7. Bianchi, Michele & Ferrari, Claudio & Melino, Francesco & Peretto, Antonio, 2012. "Feasibility study of a Thermo-Photo-Voltaic system for CHP application in residential buildings," Applied Energy, Elsevier, vol. 97(C), pages 704-713.
    8. Alaaeddin, M.H. & Sapuan, S.M. & Zuhri, M.Y.M. & Zainudin, E.S. & AL- Oqla, Faris M., 2019. "Photovoltaic applications: Status and manufacturing prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 318-332.
    9. Souliotis, Manolis & Arnaoutakis, Nektarios & Panaras, Giorgos & Kavga, Angeliki & Papaefthimiou, Spiros, 2018. "Experimental study and Life Cycle Assessment (LCA) of Hybrid Photovoltaic/Thermal (PV/T) solar systems for domestic applications," Renewable Energy, Elsevier, vol. 126(C), pages 708-723.
    10. Hossain, M.S. & Pandey, A.K. & Selvaraj, Jeyraj & Rahim, Nasrudin Abd & Islam, M.M. & Tyagi, V.V., 2019. "Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis," Renewable Energy, Elsevier, vol. 136(C), pages 1320-1336.
    11. Marco Noro & Renato M Lazzarin, 2018. "Hybrid PhotoVoltaic–Thermal heat pump systems: energy and economic performance evaluations in different climates," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(1), pages 76-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.
    2. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.
    3. Wang, Baichao & Liu, Yanfeng & Wang, Dengjia & Song, Cong & Fu, Zhiguo & Zhang, Cong, 2024. "A review of the photothermal-photovoltaic energy supply system for building in solar energy enrichment zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    2. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
    3. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    4. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    5. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    6. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Jiang, Kai & Yan, Xiaohe & Liu, Nian & Wang, Peng, 2022. "Energy trade-offs in coupled ICM and electricity market under dynamic carbon emission intensity," Energy, Elsevier, vol. 260(C).
    8. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    9. Yu Liu & Shan Gao & Xin Zhao & Chao Zhang & Ningyu Zhang, 2017. "Coordinated Operation and Control of Combined Electricity and Natural Gas Systems with Thermal Storage," Energies, MDPI, vol. 10(7), pages 1-25, July.
    10. Bianchi, M. & De Pascale, A. & Melino, F., 2013. "Performance analysis of an integrated CHP system with thermal and Electric Energy Storage for residential application," Applied Energy, Elsevier, vol. 112(C), pages 928-938.
    11. Victor Kouloumpis & Antonios Kalogerakis & Anastasia Pavlidou & George Tsinarakis & George Arampatzis, 2020. "Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    12. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
    13. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    14. Chaiyan Jettanasen & Atthapol Ngaopitakkul, 2019. "The Conducted Emission Attenuation of Micro-Inverters for Nanogrid Systems," Sustainability, MDPI, vol. 12(1), pages 1-31, December.
    15. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    16. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    17. Sun, Xiaoqin & Lin, Yian & Zhu, Ziyang & Li, Jie, 2022. "Optimized design of a distributed photovoltaic system in a building with phase change materials," Applied Energy, Elsevier, vol. 306(PA).
    18. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    19. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
    20. Muhammad Aftab Rafiq & Liguo Zhang & Chih-Chun Kung, 2022. "A Techno-Economic Analysis of Solar Energy Developmental Under Competing Technologies: A Case Study in Jiangxi, China," SAGE Open, , vol. 12(2), pages 21582440221, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:1186-1202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.