Energy and exergy analysis of the silicon production process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2013.04.051
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hermann, Weston A., 2006. "Quantifying global exergy resources," Energy, Elsevier, vol. 31(12), pages 1685-1702.
- Song, Guohui & Xiao, Jun & Zhao, Hao & Shen, Laihong, 2012. "A unified correlation for estimating specific chemical exergy of solid and liquid fuels," Energy, Elsevier, vol. 40(1), pages 164-173.
- Morris, D.R. & Steward, F.R. & Evans, P., 1983. "Energy efficiency of a lead smelter," Energy, Elsevier, vol. 8(5), pages 337-349.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Børset, Marit Takla & Wilhelmsen, Øivind & Kjelstrup, Signe & Burheim, Odne Stokke, 2017. "Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling," Energy, Elsevier, vol. 118(C), pages 865-875.
- Chen, Zhengjie & Ma, Wenhui & Wu, Jijun & Wei, Kuixian & Yang, Xi & Lv, Guoqiang & Xie, Keqiang & Yu, Jie, 2016. "Influence of carbothermic reduction on submerged arc furnace energy efficiency during silicon production," Energy, Elsevier, vol. 116(P1), pages 687-693.
- Gharagheizi, Farhad & Ilani-Kashkouli, Poorandokht & Mohammadi, Amir H. & Ramjugernath, Deresh, 2014. "A group contribution method for determination of the standard molar chemical exergy of organic compounds," Energy, Elsevier, vol. 70(C), pages 288-297.
- M. N. Uzyakov & A. Yu. Kolpakov & B. N. Porfiriev & A. A. Galinger & A. A. Yantovskii, 2023. "Materials and Energy Intensity of the Global Carbon Neutrality," Studies on Russian Economic Development, Springer, vol. 34(3), pages 335-341, June.
- Børset, M.T. & Kolbeinsen, L. & Tveit, H. & Kjelstrup, S., 2015. "Exergy based efficiency indicators for the silicon furnace," Energy, Elsevier, vol. 90(P2), pages 1916-1921.
- Shi, Shuang & Li, Pengting & Sheng, Zhilin & Jiang, Dachuan & Tan, Yi & Wang, Dengke & Wen, Shutao & Asghar, H.M. Noor ul Huda Khan, 2019. "Energy efficiency improvement in electron beam purification of silicon by using graphite lining," Energy, Elsevier, vol. 185(C), pages 102-110.
- Torbjørn Pettersen & Emil Dæhlin & Per Anders Eidem & Olaf Trygve Berglihn, 2020. "Investigating the Potential for Increased Energy Utilisation and Reduced CO 2 Emissions at Mo Industrial Park," Energies, MDPI, vol. 13(18), pages 1-23, September.
- Xie, Rui & Chen, Zhengjie & Ma, Wenhui & Wang, Xiaoyue & Gan, Xiaowei & Tao, Chenggang & Qu, Junyu, 2024. "High efficient and clean utilization of renewable energy for the process of industrial silicon," Renewable Energy, Elsevier, vol. 231(C).
- Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Zhengjie & Ma, Wenhui & Wu, Jijun & Wei, Kuixian & Yang, Xi & Lv, Guoqiang & Xie, Keqiang & Yu, Jie, 2016. "Influence of carbothermic reduction on submerged arc furnace energy efficiency during silicon production," Energy, Elsevier, vol. 116(P1), pages 687-693.
- Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
- Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
- Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
- Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
- Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
- Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).
- Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "Exergetic and exergoeconomic aspects of wind energy systems in achieving sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2810-2825, August.
- Golberg, Alexander, 2015. "Environmental exergonomics for sustainable design and analysis of energy systems," Energy, Elsevier, vol. 88(C), pages 314-321.
- Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
- Feng, Fei & Song, Guohui & Shen, Laihong & Xiao, Jun, 2017. "Environmental benefits analysis based on life cycle assessment of rice straw-based synthetic natural gas in China," Energy, Elsevier, vol. 139(C), pages 341-349.
- Chung, Millicent Rosette Wan Yi & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee, 2022. "Exergy analysis of a biorefinery process for co-production of third-generation L-lactic acid and electricity from Eucheuma denticulatum residues," Energy, Elsevier, vol. 242(C).
- William Stafford & Adrian Lotter & Alan Brent & Graham von Maltitz, 2017. "Biofuels technology: A look forward," WIDER Working Paper Series 087, World Institute for Development Economic Research (UNU-WIDER).
- Gharagheizi, Farhad & Ilani-Kashkouli, Poorandokht & Mohammadi, Amir H. & Ramjugernath, Deresh, 2014. "A group contribution method for determination of the standard molar chemical exergy of organic compounds," Energy, Elsevier, vol. 70(C), pages 288-297.
- Aghbashlo, Mortaza & Tabatabaei, Meisam & Rastegari, Hajar & Ghaziaskar, Hassan S. & Valijanian, Elena, 2018. "Exergy-based optimization of a continuous reactor applied to produce value-added chemicals from glycerol through esterification with acetic acid," Energy, Elsevier, vol. 150(C), pages 351-362.
- Song, Guohui & Xiao, Jun & Zhao, Hao & Shen, Laihong, 2012. "A unified correlation for estimating specific chemical exergy of solid and liquid fuels," Energy, Elsevier, vol. 40(1), pages 164-173.
- Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
- Siwen Zhang & Haiming Gu & Jing Qian & Wioletta Raróg-Pilecka & Yuan Wang & Qijing Wu & Hao Zhao, 2023. "Techno-Economic Assessment of High-Safety and Cost-Effective Syngas Produced by O 2 -Enriched Air Gasification with 40–70% O 2 Purity," Energies, MDPI, vol. 16(8), pages 1-13, April.
- Wang, Yongzhen & Zhang, Lanlan & Song, Yi & Han, Kai & Zhang, Yan & Zhu, Yilin & Kang, Ligai, 2024. "State-of-the-art review on evaluation indicators of integrated intelligent energy from different perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
More about this item
Keywords
Energy analysis; Exergy analysis; Exergetic efficiency; Silicon production process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:58:y:2013:i:c:p:138-146. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.