IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp216-225.html
   My bibliography  Save this article

Experimental study on Organic Rankine Cycle for waste heat recovery from low-temperature flue gas

Author

Listed:
  • Zhou, Naijun
  • Wang, Xiaoyuan
  • Chen, Zhuo
  • Wang, Zhiqi

Abstract

An experimental system for heat recovery from low-temperature flue gas based on Organic Rankine Cycle (ORC) was constructed. In the system, R123 was selected as working fluid, a scroll expander was used to produce work, and fin tubes heat exchanger was designed as evaporator. Low-temperature flue gas produced by an liquefied petroleum gas (LPG) stove was used as the heat source to simulate industrial flue gas, and its temperature can be controlled in the range of 90–220 °C. Relationships between output performance of the system and the evaporating pressure, temperature of the heat source as well as the superheat degree of the working fluid were investigated. The results show that the cycle efficiency, the output power of the expander and its exergetic efficiency increase whilst the heat recovery efficiency decreases with the increment of the evaporating pressure at a certain temperature of the heat source. The influence of the superheat degree of the working fluid on the system output parameters is slight. Under the present experimental conditions, the maximum output power of the expander is 645 W, and the cycle efficiency and the heat recovery efficiency are 8.5% and 22%, respectively.

Suggested Citation

  • Zhou, Naijun & Wang, Xiaoyuan & Chen, Zhuo & Wang, Zhiqi, 2013. "Experimental study on Organic Rankine Cycle for waste heat recovery from low-temperature flue gas," Energy, Elsevier, vol. 55(C), pages 216-225.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:216-225
    DOI: 10.1016/j.energy.2013.03.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213002429
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.03.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    2. Saleh, Bahaa & Koglbauer, Gerald & Wendland, Martin & Fischer, Johann, 2007. "Working fluids for low-temperature organic Rankine cycles," Energy, Elsevier, vol. 32(7), pages 1210-1221.
    3. Bracco, Roberto & Clemente, Stefano & Micheli, Diego & Reini, Mauro, 2013. "Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle)," Energy, Elsevier, vol. 58(C), pages 107-116.
    4. Yu, Guopeng & Shu, Gequn & Tian, Hua & Wei, Haiqiao & Liu, Lina, 2013. "Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE)," Energy, Elsevier, vol. 51(C), pages 281-290.
    5. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    6. Chys, M. & van den Broek, M. & Vanslambrouck, B. & De Paepe, M., 2012. "Potential of zeotropic mixtures as working fluids in organic Rankine cycles," Energy, Elsevier, vol. 44(1), pages 623-632.
    7. Desai, Nishith B. & Bandyopadhyay, Santanu, 2009. "Process integration of organic Rankine cycle," Energy, Elsevier, vol. 34(10), pages 1674-1686.
    8. Yamamoto, Takahisa & Furuhata, Tomohiko & Arai, Norio & Mori, Koichi, 2001. "Design and testing of the Organic Rankine Cycle," Energy, Elsevier, vol. 26(3), pages 239-251.
    9. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    10. Pei, Gang & Li, Jing & Li, Yunzhu & Wang, Dongyue & Ji, Jie, 2011. "Construction and dynamic test of a small-scale organic rankine cycle," Energy, Elsevier, vol. 36(5), pages 3215-3223.
    11. He, Chao & Liu, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2012. "The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle," Energy, Elsevier, vol. 38(1), pages 136-143.
    12. Kang, Seok Hun, 2012. "Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid," Energy, Elsevier, vol. 41(1), pages 514-524.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    2. Yang, Xufei & Xu, Jinliang & Miao, Zheng & Zou, Jinghuang & Yu, Chao, 2015. "Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques," Energy, Elsevier, vol. 90(P1), pages 864-878.
    3. Miao, Zheng & Xu, Jinliang & Zhang, Kai, 2017. "Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander," Energy, Elsevier, vol. 134(C), pages 35-49.
    4. Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
    5. Sung, Taehong & Yun, Eunkoo & Kim, Hyun Dong & Yoon, Sang Youl & Choi, Bum Seog & Kim, Kuisoon & Kim, Jangmok & Jung, Yang Beom & Kim, Kyung Chun, 2016. "Performance characteristics of a 200-kW organic Rankine cycle system in a steel processing plant," Applied Energy, Elsevier, vol. 183(C), pages 623-635.
    6. Calise, Francesco & Dentice d'Accadia, Massimo & Macaluso, Adriano & Vanoli, Laura & Piacentino, Antonio, 2016. "A novel solar-geothermal trigeneration system integrating water desalination: Design, dynamic simulation and economic assessment," Energy, Elsevier, vol. 115(P3), pages 1533-1547.
    7. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    8. Carcasci, Carlo & Ferraro, Riccardo & Miliotti, Edoardo, 2014. "Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines," Energy, Elsevier, vol. 65(C), pages 91-100.
    9. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    10. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    11. Zhang, Ye-Qiang & Wu, Yu-Ting & Xia, Guo-Dong & Ma, Chong-Fang & Ji, Wei-Ning & Liu, Shan-Wei & Yang, Kai & Yang, Fu-Bin, 2014. "Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine," Energy, Elsevier, vol. 77(C), pages 499-508.
    12. Yılmaz, Alper, 2015. "Transcritical organic Rankine vapor compression refrigeration system for intercity bus air-conditioning using engine exhaust heat," Energy, Elsevier, vol. 82(C), pages 1047-1056.
    13. Kamyar Darvish & Mehdi A. Ehyaei & Farideh Atabi & Marc A. Rosen, 2015. "Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses," Sustainability, MDPI, vol. 7(11), pages 1-22, November.
    14. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    15. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    16. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    17. Roy, J.P. & Misra, Ashok, 2012. "Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery," Energy, Elsevier, vol. 39(1), pages 227-235.
    18. Jung, Hyung-Chul & Taylor, Leighton & Krumdieck, Susan, 2015. "An experimental and modelling study of a 1 kW organic Rankine cycle unit with mixture working fluid," Energy, Elsevier, vol. 81(C), pages 601-614.
    19. Cho, Soo-Yong & Cho, Chong-Hyun, 2015. "An experimental study on the organic Rankine cycle to determine as to how efficiently utilize fluctuating thermal energy," Renewable Energy, Elsevier, vol. 80(C), pages 73-79.
    20. Cho, Soo-Yong & Cho, Chong-Hyun & Choi, Sang-Kyu, 2015. "Experiment and cycle analysis on a partially admitted axial-type turbine used in the organic Rankine cycle," Energy, Elsevier, vol. 90(P1), pages 643-651.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:216-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.