IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v54y2013icp291-301.html
   My bibliography  Save this article

Sizing the prime mover of a residential micro-combined cooling heating and power (CCHP) system by multi-criteria sizing method for different climates

Author

Listed:
  • Ebrahimi, Masood
  • Keshavarz, Ali

Abstract

In the present study, a multi-criteria sizing function (MCSF) is proposed for designing the optimum size and operating strategy of the prime mover of a residential micro-combined cooling heating and power (CCHP) system. The CCHP prepares the electrical, thermal, cooling, and domestic hot water demands of the same building in five different climates in Iran. The MCSF integrates fuel energy saving ratio (FESR) and exergy efficiency as the thermodynamical parameters, net present value, internal rate of return and payback period for the economical criteria, and CO2, CO and NOx reduction for the environmental evaluations. Analytical hierarchy process is used to weigh each criterion with respect to others. The engine proposed by MCSF results in considerable fuel saving and pollution reduction and a payback period of about 6 years for the 5 climates. In addition, the best strategy according to the engine size is determined for every climate.

Suggested Citation

  • Ebrahimi, Masood & Keshavarz, Ali, 2013. "Sizing the prime mover of a residential micro-combined cooling heating and power (CCHP) system by multi-criteria sizing method for different climates," Energy, Elsevier, vol. 54(C), pages 291-301.
  • Handle: RePEc:eee:energy:v:54:y:2013:i:c:p:291-301
    DOI: 10.1016/j.energy.2013.01.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213000923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.01.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhang, Xu-Tao & Shi, Guo-Hua, 2008. "Integrated evaluation of distributed triple-generation systems using improved grey incidence approach," Energy, Elsevier, vol. 33(9), pages 1427-1437.
    2. Roque Díaz, P. & Benito, Y.R. & Parise, J.A.R., 2010. "Thermoeconomic assessment of a multi-engine, multi-heat-pump CCHP (combined cooling, heating and power generation) system – A case study," Energy, Elsevier, vol. 35(9), pages 3540-3550.
    3. TeymouriHamzehkolaei, Fatemeh & Sattari, Sourena, 2011. "Technical and economic feasibility study of using Micro CHP in the different climate zones of Iran," Energy, Elsevier, vol. 36(8), pages 4790-4798.
    4. Sanaye, Sepehr & Ardali, Moslem Raessi, 2009. "Estimating the power and number of microturbines in small-scale combined heat and power systems," Applied Energy, Elsevier, vol. 86(6), pages 895-903, June.
    5. Ameri, Mohammad & Behbahaninia, Ali & Tanha, Amir Abbas, 2010. "Thermodynamic analysis of a tri-generation system based on micro-gas turbine with a steam ejector refrigeration system," Energy, Elsevier, vol. 35(5), pages 2203-2209.
    6. Lozano, M.A. & Carvalho, M. & Serra, L.M., 2009. "Operational strategy and marginal costs in simple trigeneration systems," Energy, Elsevier, vol. 34(11), pages 2001-2008.
    7. Martínez-Lera, S. & Ballester, J., 2010. "A novel method for the design of CHCP (combined heat, cooling and power) systems for buildings," Energy, Elsevier, vol. 35(7), pages 2972-2984.
    8. Kahraman, Cengiz & Ertay, Tijen & Buyukozkan, Gulcin, 2006. "A fuzzy optimization model for QFD planning process using analytic network approach," European Journal of Operational Research, Elsevier, vol. 171(2), pages 390-411, June.
    9. Lai, Sau Man & Hui, Chi Wai, 2009. "Feasibility and flexibility for a trigeneration system," Energy, Elsevier, vol. 34(10), pages 1693-1704.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fausto Cavallaro & Edmundas Kazimieras Zavadskas & Saulius Raslanas, 2016. "Evaluation of Combined Heat and Power (CHP) Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS," Sustainability, MDPI, vol. 8(6), pages 1-21, June.
    2. Gao, Penghui & Dai, Yanjun & Tong, YenWah & Dong, Pengwei, 2015. "Energy matching and optimization analysis of waste to energy CCHP (combined cooling, heating and power) system with exergy and energy level," Energy, Elsevier, vol. 79(C), pages 522-535.
    3. Li, Minzhi & Jiang, Xi Zhuo & Zheng, Danxing & Zeng, Guangbiao & Shi, Lin, 2016. "Thermodynamic boundaries of energy saving in conventional CCHP (Combined Cooling, Heating and Power) systems," Energy, Elsevier, vol. 94(C), pages 243-249.
    4. Anvari, Simin & Desideri, Umberto & Taghavifar, Hadi, 2020. "Design of a combined power, heating and cooling system at sized and undersized configurations for a reference building: Technoeconomic and topological considerations in Iran and Italy," Applied Energy, Elsevier, vol. 258(C).
    5. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    6. Wang, Jialong & Wu, Jingyin & Wang, Hongbin, 2015. "Experimental investigation of a dual-source powered absorption chiller based on gas engine waste heat and solar thermal energy," Energy, Elsevier, vol. 88(C), pages 680-689.
    7. Li, C.Y. & Wu, J.Y. & Shen, Y. & Kan, X. & Dai, Y.J. & Wang, C.-H., 2018. "Evaluation of a combined cooling, heating, and power system based on biomass gasification in different climate zones in the U.S," Energy, Elsevier, vol. 144(C), pages 326-340.
    8. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
    9. Jabari, Farkhondeh & Nojavan, Sayyad & Mohammadi Ivatloo, Behnam, 2016. "Designing and optimizing a novel advanced adiabatic compressed air energy storage and air source heat pump based μ-Combined Cooling, heating and power system," Energy, Elsevier, vol. 116(P1), pages 64-77.
    10. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    11. Shahzad, Sally & Brennan, John & Theodossopoulos, Dimitris & Hughes, Ben & Calautit, John Kaiser, 2017. "Energy and comfort in contemporary open plan and traditional personal offices," Applied Energy, Elsevier, vol. 185(P2), pages 1542-1555.
    12. Gibson, Chanel Ann & Meybodi, Mehdi Aghaei & Behnia, Masud, 2013. "Optimisation and selection of a steam turbine for a large scale industrial CHP (combined heat and power) system under Australia's carbon price," Energy, Elsevier, vol. 61(C), pages 291-307.
    13. Wonchala, Jason & Hazledine, Maxwell & Goni Boulama, Kiari, 2014. "Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine," Energy, Elsevier, vol. 65(C), pages 272-284.
    14. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran," Energies, MDPI, vol. 11(5), pages 1-19, May.
    15. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
    16. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    17. Ershadi, Hamed & Karimipour, Arash, 2018. "Present a multi-criteria modeling and optimization (energy, economic and environmental) approach of industrial combined cooling heating and power (CCHP) generation systems using the genetic algorithm,," Energy, Elsevier, vol. 149(C), pages 286-295.
    18. Fuentes-Cortés, Luis Fabián & Dowling, Alexander W. & Rubio-Maya, Carlos & Zavala, Víctor M. & Ponce-Ortega, José María, 2016. "Integrated design and control of multigeneration systems for building complexes," Energy, Elsevier, vol. 116(P2), pages 1403-1416.
    19. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    20. Roselli, C. & Marrasso, E. & Tariello, F. & Sasso, M., 2020. "How different power grid efficiency scenarios affect the energy and environmental feasibility of a polygeneration system," Energy, Elsevier, vol. 201(C).
    21. Miao Li & Yiran Feng & Maojun Zhou & Hailin Mu & Longxi Li & Yajun Wang, 2019. "Economic and Environmental Optimization for Distributed Energy System Integrated with District Energy Network," Energies, MDPI, vol. 12(10), pages 1-19, May.
    22. Wang, Jiang-Jiang & Fu, Chao & Yang, Kun & Zhang, Xu-Tao & Shi, Guo-hua & Zhai, John, 2013. "Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system," Energy, Elsevier, vol. 61(C), pages 531-540.
    23. Yang, Xiaohui & Liu, Kang & Leng, Zhengyang & Liu, Tao & Zhang, Liufang & Mei, Linghao, 2022. "Multi-dimensions analysis of solar hybrid CCHP systems with redundant design," Energy, Elsevier, vol. 253(C).
    24. Dai, Rui & Hu, Mengqi & Yang, Dong & Chen, Yang, 2015. "A collaborative operation decision model for distributed building clusters," Energy, Elsevier, vol. 84(C), pages 759-773.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    2. Jannelli, E. & Minutillo, M. & Cozzolino, R. & Falcucci, G., 2014. "Thermodynamic performance assessment of a small size CCHP (combined cooling heating and power) system with numerical models," Energy, Elsevier, vol. 65(C), pages 240-249.
    3. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    4. Yang, Cheng & Huang, Zhifeng & Ma, Xiaoqian, 2018. "Comparative study on off-design characteristics of CHP based on GTCC under alternative operating strategy for gas turbine," Energy, Elsevier, vol. 145(C), pages 823-838.
    5. Domenico Borello & Alessandro Corsini & Franco Rispoli & Eileen Tortora, 2013. "A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation," Energies, MDPI, vol. 6(3), pages 1-19, March.
    6. Ondeck, Abigail D. & Edgar, Thomas F. & Baldea, Michael, 2015. "Optimal operation of a residential district-level combined photovoltaic/natural gas power and cooling system," Applied Energy, Elsevier, vol. 156(C), pages 593-606.
    7. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    8. Lee, Hoseong & Bush, John & Hwang, Yunho & Radermacher, Reinhard, 2013. "Modeling of micro-CHP (combined heat and power) unit and evaluation of system performance in building application in United States," Energy, Elsevier, vol. 58(C), pages 364-375.
    9. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    10. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang, 2012. "A fuzzy multi-criteria decision-making model for CCHP systems driven by different energy sources," Energy Policy, Elsevier, vol. 42(C), pages 286-296.
    11. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang & Liu, Lei, 2012. "Life cycle assessment of a solar combined cooling heating and power system in different operation strategies," Applied Energy, Elsevier, vol. 92(C), pages 843-853.
    12. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    13. Sanaye, Sepehr & Khakpaay, Navid, 2014. "Simultaneous use of MRM (maximum rectangle method) and optimization methods in determining nominal capacity of gas engines in CCHP (combined cooling, heating and power) systems," Energy, Elsevier, vol. 72(C), pages 145-158.
    14. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    15. Li, Yan-Lai & Tang, Jia-Fu & Chin, Kwai-Sang & Jiang, Yu-Shi & Han, Yi & Pu, Yun, 2011. "Estimating the final priority ratings of engineering characteristics in mature-period product improvement by MDBA and AHP," International Journal of Production Economics, Elsevier, vol. 131(2), pages 575-586, June.
    16. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    17. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    18. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    19. Brian Agnew & Sara Walker & Bobo Ng & Ivan C. K. Tam, 2015. "Finite Time Analysis of a Tri-Generation Cycle," Energies, MDPI, vol. 8(6), pages 1-15, June.
    20. Iranmanesh, Hossein & Thomson, Vince, 2008. "Competitive advantage by adjusting design characteristics to satisfy cost targets," International Journal of Production Economics, Elsevier, vol. 115(1), pages 64-71, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:54:y:2013:i:c:p:291-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.