IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124015155.html
   My bibliography  Save this article

Low carbon operation and evaluation methods for integrated energy system counting EVs with whole life cycle considering demand response

Author

Listed:
  • Liu, Chao
  • Fan, Yiwen
  • Yu, Wanshui
  • Liu, Yishi
  • Li, Chenjia
  • Chi, Yongning

Abstract

The integrated energy system has gradually become an effective way of energy saving and emission reduction with the proposal of “dual carbon" target and the continuous promotion of low-carbon development. However, most of the existing studies on demand-side flexible loads only consider flexible power loads, and there are fewer studies on the controllability of thermal loads. This paper proposes a low-carbon and economic optimal scheduling model and evaluation method for integrated energy system considering demand-side response. With the goal of minimizing the total operating cost of the integrated energy system, and taking into account the transferable and curtailing characteristics of the electric and thermal flexible loads, we establish an optimal scheduling model of the integrated energy system considering the user-side flexible loads, and comprehensively evaluate the performance of the system in terms of economic performance, reliability, and environmental performance. The performance of the system is evaluated in terms of economic performance, reliability and environmental performance. The role of flexible loads in improving the economy of the combined supply system is investigated with examples, and the rationality and effectiveness of the study are verified through comparative analysis of different scenarios. The results show that the total cost of the system is reduced by 18.04 %, 9.1 %, 3.35 % and 7.03 % when carbon trading cost and demand-side flexible electric-heat load response are considered at the same time; and the total carbon emission of the system is reduced by 65.28 %, 20.63 %, 3.85 % and 18.03 %, respectively. Considering carbon trading costs and demand-side flexible electric and thermal load response can improve the reliability of the system. The overall reliability of the system is improved by 10 %, 15 %, 16.67 % and 20 % for the four scenarios, respectively.

Suggested Citation

  • Liu, Chao & Fan, Yiwen & Yu, Wanshui & Liu, Yishi & Li, Chenjia & Chi, Yongning, 2024. "Low carbon operation and evaluation methods for integrated energy system counting EVs with whole life cycle considering demand response," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015155
    DOI: 10.1016/j.renene.2024.121447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Liu & Wang, Dan & Hou, Kai & Jia, Hong-jie & Li, Si-yuan, 2020. "Region model and application of regional integrated energy system security analysis," Applied Energy, Elsevier, vol. 260(C).
    2. Ebrahimi, Masood & Keshavarz, Ali, 2013. "Sizing the prime mover of a residential micro-combined cooling heating and power (CCHP) system by multi-criteria sizing method for different climates," Energy, Elsevier, vol. 54(C), pages 291-301.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengcheng Ma & Zhijian Hu, 2025. "Low-Carbon Economic Scheduling of Integrated Energy System Considering Flexible Supply–Demand Response and Diversified Utilization of Hydrogen," Sustainability, MDPI, vol. 17(4), pages 1-23, February.
    2. Xunwen Zhao & Hailin Mu & Nan Li & Xue Kong & Xunpeng Shi, 2025. "Optimization Research on a Novel Community Integrated Energy System Based on Solar Energy Utilization and Energy Storage," Energies, MDPI, vol. 18(5), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Fan & Qing Liu & Mingyu Wang, 2021. "Bi-Level Multi-Objective Optimization Scheduling for Regional Integrated Energy Systems Based on Quantum Evolutionary Algorithm," Energies, MDPI, vol. 14(16), pages 1-15, August.
    2. Zhang, Chenwei & Wang, Ying & Zheng, Tao & Zhang, Kaifeng, 2024. "Complex network theory-based optimization for enhancing resilience of large-scale multi-energy System11The short version of the paper was presented at CUE2023. This paper is a substantial extension of," Applied Energy, Elsevier, vol. 370(C).
    3. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    4. Roselli, C. & Marrasso, E. & Tariello, F. & Sasso, M., 2020. "How different power grid efficiency scenarios affect the energy and environmental feasibility of a polygeneration system," Energy, Elsevier, vol. 201(C).
    5. Li, Minzhi & Jiang, Xi Zhuo & Zheng, Danxing & Zeng, Guangbiao & Shi, Lin, 2016. "Thermodynamic boundaries of energy saving in conventional CCHP (Combined Cooling, Heating and Power) systems," Energy, Elsevier, vol. 94(C), pages 243-249.
    6. Li, C.Y. & Wu, J.Y. & Shen, Y. & Kan, X. & Dai, Y.J. & Wang, C.-H., 2018. "Evaluation of a combined cooling, heating, and power system based on biomass gasification in different climate zones in the U.S," Energy, Elsevier, vol. 144(C), pages 326-340.
    7. Tahir, Muhammad Faizan & Haoyong, Chen & Guangze, Han, 2022. "Evaluating individual heating alternatives in integrated energy system by employing energy and exergy analysis," Energy, Elsevier, vol. 249(C).
    8. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran," Energies, MDPI, vol. 11(5), pages 1-19, May.
    9. Ding, Shixing & Gu, Wei & Lu, Shuai & Yu, Ruizhi & Sheng, Lina, 2022. "Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism," Applied Energy, Elsevier, vol. 311(C).
    10. Jiang, Tao & Zhang, Rufeng & Li, Xue & Chen, Houhe & Li, Guoqing, 2021. "Integrated energy system security region: Concepts, methods, and implementations," Applied Energy, Elsevier, vol. 283(C).
    11. Gao, Penghui & Dai, Yanjun & Tong, YenWah & Dong, Pengwei, 2015. "Energy matching and optimization analysis of waste to energy CCHP (combined cooling, heating and power) system with exergy and energy level," Energy, Elsevier, vol. 79(C), pages 522-535.
    12. Xiao, Jun & Lin, Xiqiao & Jiao, Heng & Song, Chenhui & Zhou, Huan & Zu, Guoqiang & Zhou, Chunli & Wang, Dan, 2023. "Model, calculation, and application of available supply capability for distribution systems," Applied Energy, Elsevier, vol. 348(C).
    13. Dong, Hongxin & Han, Zhongyang & Zhao, Jun & Wang, Wei, 2024. "A dynamic security region construction method and its existence proof for gaseous system," Applied Energy, Elsevier, vol. 367(C).
    14. Tianyi Guan & Zhuang Ma & Hao Ren & Qingshuai Yu & Rongxing Zhang & Zhenao Sun, 2025. "Research on Safety Domain Modeling of Low-Voltage Distribution Substations Based on High-Dimensional Safety Region Analysis," Energies, MDPI, vol. 18(5), pages 1-20, February.
    15. Jun Zhang & Jiangquan Wang & Linling Zhang & Lei Zhao, 2022. "Impact of industrialization on China’s regional energy security in the New Era," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8418-8440, June.
    16. Shirazi, Masoud & Fuinhas, José Alberto, 2023. "Portfolio decisions of primary energy sources and economic complexity: The world's large energy user evidence," Renewable Energy, Elsevier, vol. 202(C), pages 347-361.
    17. Fausto Cavallaro & Edmundas Kazimieras Zavadskas & Saulius Raslanas, 2016. "Evaluation of Combined Heat and Power (CHP) Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS," Sustainability, MDPI, vol. 8(6), pages 1-21, June.
    18. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    19. Wang, Jiang-Jiang & Fu, Chao & Yang, Kun & Zhang, Xu-Tao & Shi, Guo-hua & Zhai, John, 2013. "Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system," Energy, Elsevier, vol. 61(C), pages 531-540.
    20. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.