IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v45y2012i1p160-168.html
   My bibliography  Save this article

Influence of forward scattering on prediction of temperature and radiation fields inside the pulverized coal furnace

Author

Listed:
  • Crnomarkovic, Nenad
  • Sijercic, Miroslav
  • Belosevic, Srdjan
  • Stankovic, Branislav
  • Tucakovic, Dragan
  • Zivanovic, Titoslav

Abstract

A possibility of simplification of the scattering phase function of a pulverized coal flame was analyzed in the paper. It was showed that the type of radiation scattering of a pulverized coal flame is between two limiting cases: isotropic and forward scattering. A comprehensive mathematical model of a tangentially fired furnace by pulverized coal was formed. Radiative heat transfer was modeled using the six-flux model. Grid independent results of the numerical simulations were obtained. The mathematical model was verified by comparison of the results of numerical simulations with results of measurements. The influence of the type of radiation scattering on results of numerical simulation was analyzed through the relative and average differences of the gas-phase temperatures, the total radiation fluxes, and the absorbed wall fluxes of the left furnace wall. The investigation showed that the total radiation fluxes were considerably influenced by the type of radiation scattering. On the other hand, the gas-phase temperatures and the absorbed wall fluxes were much less influenced by the type of radiation scattering. The results justify the use of the scattering phase function corresponding to isotropic scattering in radiation models of comprehensive mathematical models of pulverized coal fired furnaces.

Suggested Citation

  • Crnomarkovic, Nenad & Sijercic, Miroslav & Belosevic, Srdjan & Stankovic, Branislav & Tucakovic, Dragan & Zivanovic, Titoslav, 2012. "Influence of forward scattering on prediction of temperature and radiation fields inside the pulverized coal furnace," Energy, Elsevier, vol. 45(1), pages 160-168.
  • Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:160-168
    DOI: 10.1016/j.energy.2012.01.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212000242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.01.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, J.R. & Liang, X.H. & Chen, L.H. & Cen, K.F., 1998. "Modeling of NOx emissions from a W-shaped boiler furnace under different operating conditions," Energy, Elsevier, vol. 23(12), pages 1051-1055.
    2. Fan, J.R. & Liang, X.H. & Xu, Q.S. & Zhang, X.Y. & Cen, K.F., 1997. "Numerical simulation of the flow and combustion processes in a three-dimensional, w-shaped boiler furnace," Energy, Elsevier, vol. 22(8), pages 847-857.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuang, Min & Li, Zhengqi & Zhang, Yan & Chen, Xiachao & Jia, Jinzhao & Zhu, Qunyi, 2012. "Asymmetric combustion characteristics and NOx emissions of a down-fired 300 MWe utility boiler at different boiler loads," Energy, Elsevier, vol. 37(1), pages 580-590.
    2. Liu, Chunlong & Li, Zhengqi & Zhang, Xiang & Jing, Xinjing & Zhang, Wenzhen & Chen, Zhichao & Zhu, Qunyi, 2012. "Aerodynamic characteristics within a cold small-scale model for a down-fired 350 MWe supercritical utility boiler at various primary air to vent air ratios," Energy, Elsevier, vol. 47(1), pages 294-301.
    3. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    4. Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
    5. Darbandi, Masoud & Fatin, Ali & Bordbar, Hadi, 2020. "Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments," Energy, Elsevier, vol. 199(C).
    6. Azimi, Seyyed Shahabeddin & Namazi, Mohammad Hosain, 2015. "Modeling of combustion of gas oil and natural gas in a furnace: Comparison of combustion characteristics," Energy, Elsevier, vol. 93(P1), pages 458-465.
    7. Kuang, Min & Li, Zhengqi & Zhu, Qunyi & Zhang, Yan, 2013. "Performance assessment of staged-air declination in improving asymmetric gas/particle flow characteristics within a down-fired 600 MWe supercritical utility boiler," Energy, Elsevier, vol. 49(C), pages 423-433.
    8. Kuang, Min & Li, Zhengqi, 2014. "Review of gas/particle flow, coal combustion, and NOx emission characteristics within down-fired boilers," Energy, Elsevier, vol. 69(C), pages 144-178.
    9. Wang, Qingxiang & Chen, Zhichao & Che, Miaomiao & Zeng, Lingyan & Li, Zhengqi & Song, Minhang, 2016. "Effect of different inner secondary-air vane angles on combustion characteristics of primary combustion zone for a down-fired 300-MWe utility boiler with overfire air," Applied Energy, Elsevier, vol. 182(C), pages 29-38.
    10. Kouprianov, V.I, 2001. "Modeling of thermal characteristics for a furnace of a 500 MW boiler fired with high-ash coal," Energy, Elsevier, vol. 26(9), pages 839-853.
    11. Jie Yang & Shaowen Lu & Liangyong Wang, 2020. "Fused magnesia manufacturing process: a survey," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 327-350, February.
    12. Liu, Chunlong & Li, Zhengqi & Zeng, Lingyan & Zhang, Qinghua & Hu, Richa & Zhang, Xusheng & Guo, Liang & Huang, Yong & Yang, Xianwei & Chen, Liheng, 2016. "Gas/particle two-phase flow characteristics of a down-fired 350 MWe supercritical utility boiler at different tertiary air ratios," Energy, Elsevier, vol. 102(C), pages 54-64.
    13. Wang, Qingxiang & Chen, Zhichao & Wang, Jiaquan & Zeng, Lingyan & Zhang, Xin & Li, Xiaoguang & Li, Zhengqi, 2018. "Effects of secondary air distribution in primary combustion zone on combustion and NOx emissions of a large-scale down-fired boiler with air staging," Energy, Elsevier, vol. 165(PB), pages 399-410.
    14. Chen, Zhichao & Wang, Qingxiang & Wang, Bingnan & Zeng, Lingyan & Che, Miaomiao & Zhang, Xin & Li, Zhengqi, 2017. "Anthracite combustion characteristics and NOx formation of a 300MWe down-fired boiler with swirl burners at different loads after the implementation of a new combustion system," Applied Energy, Elsevier, vol. 189(C), pages 133-141.
    15. Kuang, Min & Li, Zhengqi & Zhu, Qunyi & Wang, Yang & Chen, Lizhe & Zhang, Yan, 2012. "Experimental gas/particle flow characteristics of a down-fired 600 MWe supercritical utility boiler at different staged-air ratios," Energy, Elsevier, vol. 42(1), pages 411-423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:160-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.