Durability studies of mono-cylinder compression ignition engines operating with diesel, soy and castor oil methyl esters
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2010.10.037
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- rahimi, Hadi & Ghobadian, Barat & Yusaf, Talal & Najafi, Gholamhasan & Khatamifar, Mahdi, 2009. "Diesterol: An environment-friendly IC engine fuel," Renewable Energy, Elsevier, vol. 34(1), pages 335-342.
- Nwafor, O.M.I, 2004. "Emission characteristics of diesel engine operating on rapeseed methyl ester," Renewable Energy, Elsevier, vol. 29(1), pages 119-129.
- Ramadhas, A.S & Jayaraj, S & Muraleedharan, C, 2004. "Use of vegetable oils as I.C. engine fuels—A review," Renewable Energy, Elsevier, vol. 29(5), pages 727-742.
- Karaosmanoǧlu, F & Kurt, G & Özaktaş, T, 2000. "Long term CI engine test of sunflower oil," Renewable Energy, Elsevier, vol. 19(1), pages 219-221.
- Ramadhas, A.S. & Muraleedharan, C. & Jayaraj, S., 2005. "Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil," Renewable Energy, Elsevier, vol. 30(12), pages 1789-1800.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Fazal, M.A. & Khan, Abdul Faheem & Fayaz, H. & Varman, M., 2013. "Impact of palm biodiesel blend on injector deposit formation," Applied Energy, Elsevier, vol. 111(C), pages 882-893.
- Prakash, T. & Geo, V. Edwin & Martin, Leenus Jesu & Nagalingam, B., 2018. "Effect of ternary blends of bio-ethanol, diesel and castor oil on performance, emission and combustion in a CI engine," Renewable Energy, Elsevier, vol. 122(C), pages 301-309.
- Pyl, Steven P. & Van Geem, Kevin M. & Puimège, Philip & Sabbe, Maarten K. & Reyniers, Marie-Françoise & Marin, Guy B., 2012. "A comprehensive study of methyl decanoate pyrolysis," Energy, Elsevier, vol. 43(1), pages 146-160.
- Arumugam, S. & Sriram, G. & Ellappan, R., 2014. "Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine," Energy, Elsevier, vol. 72(C), pages 618-627.
- Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
- Hasannuddin, A.K. & Yahya, W.J. & Sarah, S. & Ithnin, A.M. & Syahrullail, S. & Sugeng, D.A. & Razak, I.F.A. & Abd Fatah, A.Y. & Aqma, W.S. & Rahman, A.H.A. & Ramlan, N.A., 2018. "Performance, emissions and carbon deposit characteristics of diesel engine operating on emulsion fuel," Energy, Elsevier, vol. 142(C), pages 496-506.
- Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
- Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M., 2014. "Impact of biodiesel blend on injector deposit formation," Energy, Elsevier, vol. 72(C), pages 813-823.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
- Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
- Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
- Alagu, Karthikeyan & Venu, Harish & Jayaraman, Jayaprabakar & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu & S, Dhanasekar, 2019. "Novel water hyacinth biodiesel as a potential alternative fuel for existing unmodified diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 179(C), pages 295-305.
- Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
- Çelikten, İsmet & Mutlu, Emre & Solmaz, Hamit, 2012. "Variation of performance and emission characteristics of a diesel engine fueled with diesel, rapeseed oil and hazelnut oil methyl ester blends," Renewable Energy, Elsevier, vol. 48(C), pages 122-126.
- Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
- Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
- Kannan, G.R. & Anand, R., 2011. "Experimental investigation on diesel engine with diestrol–water micro emulsions," Energy, Elsevier, vol. 36(3), pages 1680-1687.
- Gumus, M., 2008. "Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines," Renewable Energy, Elsevier, vol. 33(11), pages 2448-2457.
- Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
- Mwangi, John Kennedy & Lee, Wen-Jhy & Chang, Yu-Cheng & Chen, Chia-Yang & Wang, Lin-Chi, 2015. "An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines," Applied Energy, Elsevier, vol. 159(C), pages 214-236.
- Kim, Hwanam & Choi, Byungchul, 2010. "The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine," Renewable Energy, Elsevier, vol. 35(1), pages 157-163.
- Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
- Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
- Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
- Barontini, Federica & Simone, Marco & Triana, Federico & Mancini, Andrea & Ragaglini, Giorgio & Nicolella, Cristiano, 2015. "Pilot-scale biofuel production from sunflower crops in central Italy," Renewable Energy, Elsevier, vol. 83(C), pages 954-962.
- Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
- Sharon, H. & Karuppasamy, K. & Soban Kumar, D.R. & Sundaresan, A., 2012. "A test on DI diesel engine fueled with methyl esters of used palm oil," Renewable Energy, Elsevier, vol. 47(C), pages 160-166.
- Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
More about this item
Keywords
Soy methyl ester; Castor oil methyl ester; Compression ignition engine; Engine wear; Durability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:6:p:3917-3923. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.