Combustion optimization of a port-array inverse diffusion flame jet
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2011.02.025
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Makmool, U. & Jugjai, S. & Tia, S. & Vallikul, P. & Fungtammasan, B., 2007. "Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand," Energy, Elsevier, vol. 32(10), pages 1986-1995.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wan, Huaxian & Gao, Zihe & Ji, Jie & Zhang, Yongming & Li, Kaiyuan, 2018. "Experimental and theoretical study on flame front temperatures within ceiling jets from turbulent diffusion flames of n-heptane fuel," Energy, Elsevier, vol. 164(C), pages 79-86.
- Yuan, Ye & Li, GuoXiu & Sun, ZuoYu & Li, HongMeng & Zhou, ZiHang, 2016. "Experimental study on the dynamical features of a partially premixed methane jet flame in coflow," Energy, Elsevier, vol. 111(C), pages 593-598.
- Rabee, Basem A., 2018. "The effect of inverse diffusion flame burner-diameter on flame characteristics and emissions," Energy, Elsevier, vol. 160(C), pages 1201-1207.
- Kapusta, Łukasz Jan & Shuang, Chen & Aldén, Marcus & Li, Zhongshan, 2020. "Structures of inverse jet flames stabilized on a coaxial burner," Energy, Elsevier, vol. 193(C).
- De Giorgi, Maria Grazia & Ficarella, Antonio & Sciolti, Aldebara & Pescini, Elisa & Campilongo, Stefano & Di Lecce, Giorgio, 2017. "Improvement of lean flame stability of inverse methane/air diffusion flame by using coaxial dielectric plasma discharge actuators," Energy, Elsevier, vol. 126(C), pages 689-706.
- Haisheng Zhen & Zhilong Wei & Zhenbin Chen, 2018. "Effect of N 2 Replacement by CO 2 in Coaxial-Flow on the Combustion and Emission of a Diffusion Flame," Energies, MDPI, vol. 11(5), pages 1-16, April.
- Lawal, Mohammed S. & Fairweather, Michael & Gogolek, Peter & Ingham, Derek B. & Ma, Lin & Pourkashanian, Mohamed & Williams, Alan, 2013. "CFD predictions of wake-stabilised jet flames in a cross-flow," Energy, Elsevier, vol. 53(C), pages 259-269.
- Dong, L.L. & Cheung, C.S. & Leung, C.W., 2013. "Heat transfer optimization of an impinging port-array inverse diffusion flame jet," Energy, Elsevier, vol. 49(C), pages 182-192.
- Maria Grazia De Giorgi & Aldebara Sciolti & Stefano Campilongo & Antonio Ficarella, 2017. "Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges," Energies, MDPI, vol. 10(3), pages 1-15, March.
- De la Cruz-Ávila, M. & Martínez-Espinosa, E. & Polupan, Georgiy & Vicente, W., 2017. "Numerical study of the effect of jet velocity on methane-oxygen confined inverse diffusion flame in a 4 Lug-Bolt array," Energy, Elsevier, vol. 141(C), pages 1629-1649.
- Miao, J. & Leung, C.W. & Cheung, C.S. & Huang, Z.H. & Zhen, H.S., 2016. "Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame," Energy, Elsevier, vol. 104(C), pages 284-294.
- Zare, Saeid & Lo, Hao Wei & Roy, Shrabanti & Askari, Omid, 2020. "On the low-temperature plasma discharge in methane/air diffusion flames," Energy, Elsevier, vol. 197(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
- Zhang, Yuchun & Yi, Weiming & Fu, Peng & Li, Zhihe & Bai, Xueyuan & Tian, Chunyan & Wang, Nana & Li, Yongjun, 2019. "Flow and reaction characteristics on catalytic upgrading of biomass pyrolysis vapors in novel cyclone reactors," Energy, Elsevier, vol. 189(C).
- Mujeebu, M. Abdul & Abdullah, M.Z. & Mohamad, A.A., 2011. "Development of energy efficient porous medium burners on surface and submerged combustion modes," Energy, Elsevier, vol. 36(8), pages 5132-5139.
- Yoksenakul, W. & Jugjai, S., 2011. "Design and development of a SPMB (self-aspirating, porous medium burner) with a submerged flame," Energy, Elsevier, vol. 36(5), pages 3092-3100.
More about this item
Keywords
Inverse diffusion flame; Flame structure; Port-array burner; Combustion emission;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2834-2846. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.