A projection for global CO2 emissions from the industrial sector through 2030 based on activity level and technology changes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2010.08.016
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gielen, Dolf & Taylor, Michael, 2007. "Modelling industrial energy use: The IEAs Energy Technology Perspectives," Energy Economics, Elsevier, vol. 29(4), pages 889-912, July.
- Worrell, Ernst & Martin, Nathan & Price, Lynn, 2000. "Potentials for energy efficiency improvement in the US cement industry," Energy, Elsevier, vol. 25(12), pages 1189-1214.
- Hoogwijk, Monique & Rue du Can, Stephane de la & Novikova, Aleksandra & Urge-Vorsatz, Diana & Blomen, Eliane & Blok, Kornelis, 2010. "Assessment of bottom-up sectoral and regional mitigation potentials," Energy Policy, Elsevier, vol. 38(6), pages 3044-3057, June.
- Worrell, Ernst & Price, Lynn & Martin, Nathan, 2001. "Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector," Energy, Elsevier, vol. 26(5), pages 513-536.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Akashi, Osamu & Hijioka, Yasuaki & Masui, Toshihiko & Hanaoka, Tatsuya & Kainuma, Mikiko, 2012. "GHG emission scenarios in Asia and the world: The key technologies for significant reduction," Energy Economics, Elsevier, vol. 34(S3), pages 346-358.
- Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & Mima, Silvana & van Vuuren, Detlef P. & Worrell, Ernst, 2019.
"The scope for better industry representation in long-term energy models: Modeling the cement industry,"
Applied Energy, Elsevier, vol. 240(C), pages 964-985.
- Katerina Kermeli & Oreane Edelenbosch & Wina Crijns-Graus & Bas van Ruijven & Silvana Mima & Detlef van Vuuren & Ernst Worrell, 2019. "The scope for better industry representation in long-term energy models: Modeling the cement industry," Post-Print hal-02061441, HAL.
- Oshiro, Ken & Fujimori, Shinichiro & Ochi, Yuki & Ehara, Tomoki, 2021. "Enabling energy system transition toward decarbonization in Japan through energy service demand reduction," Energy, Elsevier, vol. 227(C).
- van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
- Joud Hwalla & Jad Bawab & Hilal El-Hassan & Feras Abu Obaida & Tamer El-Maaddawy, 2023. "Scientometric Analysis of Global Research on the Utilization of Geopolymer Composites in Construction Applications," Sustainability, MDPI, vol. 15(14), pages 1-37, July.
- Mikulčić, Hrvoje & Vujanović, Milan & Fidaros, Dimitris K. & Priesching, Peter & Minić, Ivica & Tatschl, Reinhard & Duić, Neven & Stefanović, Gordana, 2012. "The application of CFD modelling to support the reduction of CO2 emissions in cement industry," Energy, Elsevier, vol. 45(1), pages 464-473.
- González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2013. "Analysis of CO2 emissions reduction potential in secondary production and semi-fabrication of non-ferrous metals," Energy Policy, Elsevier, vol. 52(C), pages 328-341.
- Cantore, Nicola, 2012. "Sustainability of the energy sector in the Mediterranean region," Energy, Elsevier, vol. 48(1), pages 423-430.
- Lechtenböhmer, Stefan & Nilsson, Lars J. & Åhman, Max & Schneider, Clemens, 2016. "Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand," Energy, Elsevier, vol. 115(P3), pages 1623-1631.
- Osamu Akashi & Tatsuya Hanaoka & Toshihiko Masui & Mikiko Kainuma, 2014. "Halving global GHG emissions by 2050 without depending on nuclear and CCS," Climatic Change, Springer, vol. 123(3), pages 611-622, April.
- Acquaye, Adolf & Ibn-Mohammed, Taofeeq & Genovese, Andrea & Afrifa, Godfred A & Yamoah, Fred A & Oppon, Eunice, 2018. "A quantitative model for environmentally sustainable supply chain performance measurement," European Journal of Operational Research, Elsevier, vol. 269(1), pages 188-205.
- Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & van Vuuren, Detlef P. & Worrell, Ernst, 2022. "Improving material projections in Integrated Assessment Models: The use of a stock-based versus a flow-based approach for the iron and steel industry," Energy, Elsevier, vol. 239(PE).
- Shen, Lei & Gao, Tianming & Zhao, Jianan & Wang, Limao & Wang, Lan & Liu, Litao & Chen, Fengnan & Xue, Jingjing, 2014. "Factory-level measurements on CO2 emission factors of cement production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 337-349.
- Zhou, Sheng & Kyle, G. Page & Yu, Sha & Clarke, Leon E. & Eom, Jiyong & Luckow, Patrick & Chaturvedi, Vaibhav & Zhang, Xiliang & Edmonds, James A., 2013. "Energy use and CO2 emissions of China's industrial sector from a global perspective," Energy Policy, Elsevier, vol. 58(C), pages 284-294.
- Park, Nyun-Bae & Park, Sang Yong & Kim, Jong-Jin & Choi, Dong Gu & Yun, Bo Yeong & Hong, Jong Chul, 2017. "Technical and economic potential of highly efficient boiler technologies in the Korean industrial sector," Energy, Elsevier, vol. 121(C), pages 884-891.
- Lund, Henrik, 2018. "Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach," Energy, Elsevier, vol. 151(C), pages 94-102.
- Markovska, Natasa & Duić, Neven & Mathiesen, Brian Vad & Guzović, Zvonimir & Piacentino, Antonio & Schlör, Holger & Lund, Henrik, 2016. "Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems," Energy, Elsevier, vol. 115(P3), pages 1504-1512.
- Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
- Dhar, Subash & Pathak, Minal & Shukla, Priyadarshi R., 2020. "Transformation of India's steel and cement industry in a sustainable 1.5 °C world," Energy Policy, Elsevier, vol. 137(C).
- Zuoxi Liu & Huijuan Dong & Yong Geng & Chengpeng Lu & Wanxia Ren, 2014. "Insights into the Regional Greenhouse Gas (GHG) Emission of Industrial Processes: A Case Study of Shenyang, China," Sustainability, MDPI, vol. 6(6), pages 1-17, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2013. "Analysis of CO2 emissions reduction potential in secondary production and semi-fabrication of non-ferrous metals," Energy Policy, Elsevier, vol. 52(C), pages 328-341.
- Iftikhar Ahmad & Muhammad Salman Arif & Izzat Iqbal Cheema & Patrik Thollander & Masroor Ahmed Khan, 2020. "Drivers and Barriers for Efficient Energy Management Practices in Energy-Intensive Industries: A Case-Study of Iron and Steel Sector," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
- Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
- Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
- Rodrigues da Silva, Rafael & Mathias, Flavio Roberto de Carvalho & Bajay, Sergio Valdir, 2018. "Potential energy efficiency improvements for the Brazilian iron and steel industry: Fuel and electricity conservation supply curves for integrated steel mills," Energy, Elsevier, vol. 153(C), pages 816-824.
- Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Pinto, Raphael Guimarães D. & Szklo, Alexandre S. & Rathmann, Regis, 2018. "CO2 emissions mitigation strategy in the Brazilian iron and steel sector–From structural to intensity effects," Energy Policy, Elsevier, vol. 114(C), pages 380-393.
- Hoogwijk, Monique & Rue du Can, Stephane de la & Novikova, Aleksandra & Urge-Vorsatz, Diana & Blomen, Eliane & Blok, Kornelis, 2010. "Assessment of bottom-up sectoral and regional mitigation potentials," Energy Policy, Elsevier, vol. 38(6), pages 3044-3057, June.
- Kong, Lingbo & Hasanbeigi, Ali & Price, Lynn & Liu, Huanbin, 2017. "Energy conservation and CO2 mitigation potentials in the Chinese pulp and paper industry," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 74-84.
- Chen, Zhenling & Zhang, Xiaoling & Ni, Guohua, 2020. "Decomposing capacity utilization under carbon dioxide emissions reduction constraints in data envelopment analysis: An application to Chinese regions," Energy Policy, Elsevier, vol. 139(C).
- Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
- Sato, S. & Grubb, M. & Cust, J. & Chan, K. & Korppoo, A. & Ceppi, P., 2007.
"Differentiation and dynamics of competitiveness impacts from the EU ETS,"
Cambridge Working Papers in Economics
0712, Faculty of Economics, University of Cambridge.
- Misato Sato & Michael Grubb & Jim Cust & Katie Chan & Anna Korppoo, 2007. "Differentiation and Dynamics of Competitiveness Impacts from the EU ETS," Working Papers EPRG 0704, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Tsiliyannis, C.A., 2016. "Cement manufacturing using alternative fuels: Enhanced productivity and environmental compliance via oxygen enrichment," Energy, Elsevier, vol. 113(C), pages 1202-1218.
- Wang, Xiaolei & Lin, Boqiang, 2016. "How to reduce CO2 emissions in China׳s iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1496-1505.
- Kalantzis, Fotios & Revoltella, Debora, 2019. "How energy audits promote SMEs' energy efficiency investment," EIB Working Papers 2019/02, European Investment Bank (EIB).
- Hidalgo, Ignacio & Szabo, Laszlo & Carlos Ciscar, Juan & Soria, Antonio, 2005. "Technological prospects and CO2 emission trading analyses in the iron and steel industry: A global model," Energy, Elsevier, vol. 30(5), pages 583-610.
- Liu, Yang & Zhang, Congrui & Xu, Xiaochuan & Ge, Yongxiang & Ren, Gaofeng, 2022. "Assessment of energy conservation potential and cost in open-pit metal mines: Bottom-up approach integrated energy conservation supply curve and ultimate pit limit," Energy Policy, Elsevier, vol. 163(C).
- Flues, Florens & Rübbelke, Dirk & Vögele, Stefan, 2013.
"Energy Efficiency and Industrial Output: The Case of the Iron and Steel Industry,"
Energy: Resources and Markets
162379, Fondazione Eni Enrico Mattei (FEEM).
- Flues, Florens & Rübbelke, Dirk & Vögele, Stefan, 2013. "Energy efficiency and industrial output: The case of the iron and steel industry," ZEW Discussion Papers 13-101, ZEW - Leibniz Centre for European Economic Research.
- Florens Flues & Dirk Rübbelke & Stefan Vögele, 2013. "Energy Efficiency and Industrial Output: The Case of the Iron and Steel Industry," Working Papers 2013.96, Fondazione Eni Enrico Mattei.
- Talaei, Alireza & Pier, David & Iyer, Aishwarya V. & Ahiduzzaman, Md & Kumar, Amit, 2019. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry," Energy, Elsevier, vol. 170(C), pages 1051-1066.
- Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
More about this item
Keywords
CO2 emission; Industrial sector; Global; Medium-term; Bottom-up model;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:4:p:1855-1867. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.