IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i1p627-632.html
   My bibliography  Save this article

Fabrication and characterization of dye-sensitized solar cells from rutile nanofibers and nanorods

Author

Listed:
  • Francis, L.
  • Sreekumaran Nair, A.
  • Jose, R.
  • Ramakrishna, S.
  • Thavasi, V.
  • Marsano, E.

Abstract

Rutile titania (TiO2) nanofibers were prepared by electrospinning a polymeric sol containing a titanium precursor and Poly(vinylpyrrolidone) in acetic acid-ethanol mixture and subsequent sintering of the fibers at 800 °C. The resultant continuous, polycrystalline porous fibers contained TiO2 grains of 15–20 nm sizes. The continuous fibers were broken down into nanorods by mechanical grinding. Morphology of the nanofibers and nanorods was characterized by scanning and transmission electron microscopies. The crystal structure and polycrystallinity of the fibers were further confirmed by X-ray diffraction analysis. Dye-sensitized solar cells (DSCs) fabricated from the nanofibers and rutile nanorods, respectively, showed superior performance with the later.

Suggested Citation

  • Francis, L. & Sreekumaran Nair, A. & Jose, R. & Ramakrishna, S. & Thavasi, V. & Marsano, E., 2011. "Fabrication and characterization of dye-sensitized solar cells from rutile nanofibers and nanorods," Energy, Elsevier, vol. 36(1), pages 627-632.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:1:p:627-632
    DOI: 10.1016/j.energy.2010.09.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210005554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.09.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McConnell, R. D., 2002. "Assessment of the dye-sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 271-293, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alami, Abdul Hai & Rajab, Bilal & Aokal, Kamilia, 2017. "Assessment of silver nanowires infused with zinc oxide as a transparent electrode for dye-sensitized solar cell applications," Energy, Elsevier, vol. 139(C), pages 1231-1236.
    2. Wang, Yu-Chao & Cho, Chun-Pei, 2015. "Improved performance of dye-sensitized solar cells with patterned fluorine-doped tin oxide electrodes," Energy, Elsevier, vol. 89(C), pages 277-282.
    3. Cauda, Valentina & Pugliese, Diego & Garino, Nadia & Sacco, Adriano & Bianco, Stefano & Bella, Federico & Lamberti, Andrea & Gerbaldi, Claudio, 2014. "Multi-functional energy conversion and storage electrodes using flower-like Zinc oxide nanostructures," Energy, Elsevier, vol. 65(C), pages 639-646.
    4. Yue, Gentian & Wu, Jihuai & Xiao, Yaoming & Lin, Jianming & Huang, Miaoliang & Lan, Zhang & Fan, Leqing, 2013. "Functionalized graphene/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells," Energy, Elsevier, vol. 54(C), pages 315-321.
    5. Yue, Gentian & Wang, Lei & Zhang, Xin'an & Wu, Jihuai & Jiang, Qiwei & Zhang, Weifeng & Huang, Miaoliang & Lin, Jianming, 2014. "Fabrication of high performance multi-walled carbon nanotubes/polypyrrole counter electrode for dye-sensitized solar cells," Energy, Elsevier, vol. 67(C), pages 460-467.
    6. Wang, Guanxi & Xiao, Wei & Yu, Jiaguo, 2015. "High-efficiency dye-sensitized solar cells based on electrospun TiO2 multi-layered composite film photoanodes," Energy, Elsevier, vol. 86(C), pages 196-203.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashmi, Ghufran & Miettunen, Kati & Peltola, Timo & Halme, Janne & Asghar, Imran & Aitola, Kerttu & Toivola, Minna & Lund, Peter, 2011. "Review of materials and manufacturing options for large area flexible dye solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3717-3732.
    2. Su, Shanhe & Liu, Tie & Wang, Yuan & Chen, Xiaohang & Wang, Jintong & Chen, Jincan, 2014. "Performance optimization analyses and parametric design criteria of a dye-sensitized solar cell thermoelectric hybrid device," Applied Energy, Elsevier, vol. 120(C), pages 16-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:1:p:627-632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.