IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i11p6289-6297.html
   My bibliography  Save this article

Simulation study of the production of biodiesel using feedstock mixtures of fatty acids in complex reactive distillation columns

Author

Listed:
  • Cossio-Vargas, E.
  • Hernandez, S.
  • Segovia-Hernandez, J.G.
  • Cano-Rodriguez, M.I.

Abstract

Biodiesel can be produced from a number of natural, renewable sources, but vegetable oils are the main feedstocks. The current manufacturing biodiesel processes, however, have several disadvantages: expensive separation of products from the reaction mixture, and high costs due to relatively complex processes involving one to two reactors and several separation units. Therefore, to solve these problems, in recent years several researchers have developed a sustainable biodiesel production process based on reactive distillation. In this paper the production of biodiesel using feedstock mixtures of fatty acids is explored using reactive distillation sequences with thermal coupling. The results indicate that the complex reactive distillation sequences can produce a mixture of esters as bottoms product that can be used as biodiesel. In particular, the thermally coupled distillation sequence involving a side rectifier can handle the reaction and complete separation in accordance with process intensification principles.

Suggested Citation

  • Cossio-Vargas, E. & Hernandez, S. & Segovia-Hernandez, J.G. & Cano-Rodriguez, M.I., 2011. "Simulation study of the production of biodiesel using feedstock mixtures of fatty acids in complex reactive distillation columns," Energy, Elsevier, vol. 36(11), pages 6289-6297.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:11:p:6289-6297
    DOI: 10.1016/j.energy.2011.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211006645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suphanit, B. & Bischert, A. & Narataruksa, P., 2007. "Exergy loss analysis of heat transfer across the wall of the dividing-wall distillation column," Energy, Elsevier, vol. 32(11), pages 2121-2134.
    2. Suphanit, B., 2011. "Optimal heat distribution in the internally heat-integrated distillation column (HIDiC)," Energy, Elsevier, vol. 36(7), pages 4171-4181.
    3. Nguyen, Nghi & Demirel, Yaşar, 2011. "Using thermally coupled reactive distillation columns in biodiesel production," Energy, Elsevier, vol. 36(8), pages 4838-4847.
    4. Hernández, Salvador & Gabriel Segovia-Hernández, Juan & Rico-Ramírez, Vicente, 2006. "Thermodynamically equivalent distillation schemes to the Petlyuk column for ternary mixtures," Energy, Elsevier, vol. 31(12), pages 2176-2183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poddar, Tuhin & Jagannath, Anoop & Almansoori, Ali, 2017. "Use of reactive distillation in biodiesel production: A simulation-based comparison of energy requirements and profitability indicators," Applied Energy, Elsevier, vol. 185(P2), pages 985-997.
    2. Cortés-Borda, D. & Guillén-Gosálbez, G. & Jiménez, L., 2015. "Assessment of nuclear energy embodied in international trade following a world multi-regional input–output approach," Energy, Elsevier, vol. 91(C), pages 91-101.
    3. Bilgili, Faik, 2012. "Linear and nonlinear TAR panel unit root analyses for solid biomass energy supply of European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6775-6781.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Modla, G. & Lang, P., 2013. "Heat pump systems with mechanical compression for batch distillation," Energy, Elsevier, vol. 62(C), pages 403-417.
    2. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    3. Modla, G., 2013. "Energy saving methods for the separation of a minimum boiling point azeotrope using an intermediate entrainer," Energy, Elsevier, vol. 50(C), pages 103-109.
    4. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    5. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    6. Sun, Jinsheng & Dai, Leilei & Shi, Ming & Gao, Hong & Cao, Xijia & Liu, Guangxin, 2014. "Further optimization of a parallel double-effect organosilicon distillation scheme through exergy analysis," Energy, Elsevier, vol. 69(C), pages 370-377.
    7. Kiran, Bandaru & Jana, Amiya K. & Samanta, Amar Nath, 2012. "A novel intensified heat integration in multicomponent distillation," Energy, Elsevier, vol. 41(1), pages 443-453.
    8. Khoa, T.D. & Shuhaimi, M. & Hashim, H. & Panjeshahi, M.H., 2010. "Optimal design of distillation column using three dimensional exergy analysis curves," Energy, Elsevier, vol. 35(12), pages 5309-5319.
    9. Khoa, T.D. & Shuhaimi, M. & Nam, H.M., 2012. "Application of three dimensional exergy analysis curves for absorption columns," Energy, Elsevier, vol. 37(1), pages 273-280.
    10. Shahandeh, H. & Ivakpour, J. & Kasiri, N., 2014. "Internal and external HIDiCs (heat-integrated distillation columns) optimization by genetic algorithm," Energy, Elsevier, vol. 64(C), pages 875-886.
    11. Jana, Amiya K., 2016. "A new divided-wall heat integrated distillation column (HIDiC) for batch processing: Feasibility and analysis," Applied Energy, Elsevier, vol. 172(C), pages 199-206.
    12. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    13. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "A new search space reduction method based on exergy analysis for distillation columns synthesis," Energy, Elsevier, vol. 116(P1), pages 795-811.
    14. Sun, Jinsheng & Wang, Fan & Ma, Tingting & Gao, Hong & Liu, Yanzhen & Cai, Fang, 2012. "Exergy analysis of a parallel double-effect organosilicon monomer distillation scheme," Energy, Elsevier, vol. 47(1), pages 498-504.
    15. Choe, Changgwon & Haider, Junaid & Lim, Hankwon, 2023. "Carbon capture and liquefaction from methane steam reforming unit: 4E’s analysis (Energy, Exergy, Economic, and Environmental)," Applied Energy, Elsevier, vol. 332(C).
    16. Haragovics, Máté & Mizsey, Péter, 2014. "A novel application of exergy analysis: Lean manufacturing tool to improve energy efficiency and flexibility of hydrocarbon processing," Energy, Elsevier, vol. 77(C), pages 382-390.
    17. Kim, Young Han, 2014. "Application of partially diabatic divided wall column to floating liquefied natural gas plant," Energy, Elsevier, vol. 70(C), pages 435-443.
    18. Gómez-Castro, F.I. & Gutiérrez-Antonio, C. & Romero-Izquierdo, A.G. & May-Vázquez, M.M. & Hernández, S., 2023. "Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Khalili, N. & Kasiri, N. & Ivakpour, J. & Khalili-Garakani, A. & Khanof, M.H., 2020. "Optimal configuration of ternary distillation columns using heat integration with external heat exchangers," Energy, Elsevier, vol. 191(C).
    20. Cui, Chengtian & Li, Xingang & Guo, Dongrong & Sun, Jinsheng, 2017. "Towards energy efficient styrene distillation scheme: From grassroots design to retrofit," Energy, Elsevier, vol. 134(C), pages 193-205.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:11:p:6289-6297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.