IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i9p3877-3882.html
   My bibliography  Save this article

Enhancement of APCI cycle efficiency with absorption chillers

Author

Listed:
  • Mortazavi, Amir
  • Somers, Christopher
  • Alabdulkarem, Abdullah
  • Hwang, Yunho
  • Radermacher, Reinhard

Abstract

Liquefied natural gas (LNG) plants consume a great amount of energy. In order to enhance the energy efficiency of the LNG plant, the potential energy efficiency enhancements of various options of utilizing the waste heat powered absorption chillers in the propane pre-cooled mixed refrigerant (APCI) liquefaction cycle were investigated in this study. After developing models of the LNG process, gas turbine and absorption chillers, eight options of gas turbine waste heat utilization were simulated. The simulation results show that by replacing 22 °C and 9 °C evaporators and cooling the condenser of propane cycle at 14 °C and inter-cooling the compressor of mixed refrigerant cycle with absorption chillers which are powered by waste heat from the gas turbine, both the compressor power and fuel consumption reduction can be achieved as much as 21.32%. This enhancement requires recovering at least 97% of gas turbine waste heat.

Suggested Citation

  • Mortazavi, Amir & Somers, Christopher & Alabdulkarem, Abdullah & Hwang, Yunho & Radermacher, Reinhard, 2010. "Enhancement of APCI cycle efficiency with absorption chillers," Energy, Elsevier, vol. 35(9), pages 3877-3882.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3877-3882
    DOI: 10.1016/j.energy.2010.05.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210003130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.05.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    2. Mortazavi, Amir & Alabdulkarem, Abdullah & Hwang, Yunho & Radermacher, Reinhard, 2016. "Development of a robust refrigerant mixture for liquefaction of highly uncertain natural gas compositions," Energy, Elsevier, vol. 113(C), pages 1042-1050.
    3. Ghorbani, Bahram & Shirmohammadi, Reza & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2018. "Structural, operational and economic optimization of cryogenic natural gas plant using NSGAII two-objective genetic algorithm," Energy, Elsevier, vol. 159(C), pages 410-428.
    4. Almeida-Trasvina, Fernando & Smith, Robin, 2023. "Design and optimisation of novel cascade mixed refrigerant cycles for LNG production – Part II: Novel cascade configurations," Energy, Elsevier, vol. 266(C).
    5. Wenyi Liu & Linzhi Liu & Gang Xu & Feifei Liang & Yongping Yang & Weide Zhang & Ying Wu, 2014. "A Novel Hybrid-Fuel Storage System of Compressed Air Energy for China," Energies, MDPI, vol. 7(8), pages 1-23, August.
    6. Wonchala, Jason & Hazledine, Maxwell & Goni Boulama, Kiari, 2014. "Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine," Energy, Elsevier, vol. 65(C), pages 272-284.
    7. Mortazavi, Amir & Alabdulkarem, Abdullah & Hwang, Yunho & Radermacher, Reinhard, 2014. "Novel combined cycle configurations for propane pre-cooled mixed refrigerant (APCI) natural gas liquefaction cycle," Applied Energy, Elsevier, vol. 117(C), pages 76-86.
    8. Muhammad Abdul Qyyum & Muhammad Yasin & Alam Nawaz & Tianbiao He & Wahid Ali & Junaid Haider & Kinza Qadeer & Abdul-Sattar Nizami & Konstantinos Moustakas & Moonyong Lee, 2020. "Single-Solution-Based Vortex Search Strategy for Optimal Design of Offshore and Onshore Natural Gas Liquefaction Processes," Energies, MDPI, vol. 13(7), pages 1-22, April.
    9. Popli, Sahil & Rodgers, Peter & Eveloy, Valerie, 2012. "Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization," Applied Energy, Elsevier, vol. 93(C), pages 624-636.
    10. Son, Heechang & Austbø, Bjørn & Gundersen, Truls & Hwang, Jihyun & Lim, Youngsub, 2022. "Techno-economic versus energy optimization of natural gas liquefaction processes with different heat exchanger technologies," Energy, Elsevier, vol. 245(C).
    11. Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
    12. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
    13. Sayyaadi, Hoseyn & Mehrabipour, Reza, 2012. "Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger," Energy, Elsevier, vol. 38(1), pages 362-375.
    14. Zhang, Jinrui & Meerman, Hans & Benders, René & Faaij, André, 2020. "Technical and economic optimization of expander-based small-scale natural gas liquefaction processes with absorption precooling cycle," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3877-3882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.