IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i7p3008-3021.html
   My bibliography  Save this article

Modeling of multiphase combustion and deposit formation in a biomass-fed furnace

Author

Listed:
  • Venturini, P.
  • Borello, D.
  • Iossa, C.
  • Lentini, D.
  • Rispoli, F.

Abstract

A comprehensive computational model for biomass combustion is presented, featuring a solid phase combustion model, a fluid dynamic model for the gas phase, and a solid particle transport and deposit formation model. The submodel developed to track particle trajectories is briefly outlined. The model is implemented on the Finite Element code XENIOS++, and a test case is considered of a furnace burning wooden biomass chips added with water and inert material; a dedicated flamelet library is worked out to model combustion. Results underline the capability of the code to predict combustion conditions and, in particular, the growth rates of deposits of different particle size over the furnace walls, as well as the most critical locations for particle deposition.

Suggested Citation

  • Venturini, P. & Borello, D. & Iossa, C. & Lentini, D. & Rispoli, F., 2010. "Modeling of multiphase combustion and deposit formation in a biomass-fed furnace," Energy, Elsevier, vol. 35(7), pages 3008-3021.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:7:p:3008-3021
    DOI: 10.1016/j.energy.2010.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210001672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costa, M. & Dell'Isola, M. & Massarotti, N., 2009. "Numerical analysis of the thermo-fluid-dynamic field in the combustion chamber of an incinerator plant," Energy, Elsevier, vol. 34(12), pages 2075-2086.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borello, D. & Cedola, L. & Frangioni, G.V. & Meloni, R. & Venturini, P. & De Filippis, P. & de Caprariis, B., 2016. "Development of a numerical model for biomass packed bed pyrolysis based on experimental validation," Applied Energy, Elsevier, vol. 164(C), pages 956-962.
    2. Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.
    3. Bala-Litwiniak, Agnieszka & Zajemska, Monika, 2020. "Computational and experimental study of pine and sunflower husk pellet combustion and co-combustion with oats in domestic boiler," Renewable Energy, Elsevier, vol. 162(C), pages 151-159.
    4. Yin, Chungen & Rosendahl, Lasse & Clausen, Sønnik & Hvid, Søren L., 2012. "Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons," Energy, Elsevier, vol. 41(1), pages 473-482.
    5. Kalembkiewicz, Jan & Chmielarz, Urszula, 2012. "Ashes from co-combustion of coal and biomass: New industrial wastes," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 109-121.
    6. Luan, Chao & You, Changfu & Zhang, Dongke, 2014. "Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace," Energy, Elsevier, vol. 69(C), pages 562-570.
    7. Costa, M. & Massarotti, N. & Indrizzi, V. & Rajh, B. & Yin, C. & Samec, N., 2014. "Engineering bed models for solid fuel conversion process in grate-fired boilers," Energy, Elsevier, vol. 77(C), pages 244-253.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Chungen & Rosendahl, Lasse & Clausen, Sønnik & Hvid, Søren L., 2012. "Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons," Energy, Elsevier, vol. 41(1), pages 473-482.
    2. Borello, Domenico & Venturini, Paolo & Rispoli, Franco & Rafael, Saavedra G.Z., 2013. "Prediction of multiphase combustion and ash deposition within a biomass furnace," Applied Energy, Elsevier, vol. 101(C), pages 413-422.
    3. Ameur, Houari & Bouzit, Mohamed, 2013. "Power consumption for stirring shear thinning fluids by two-blade impeller," Energy, Elsevier, vol. 50(C), pages 326-332.
    4. Ammar, M. & Chtourou, W. & Driss, Z. & Abid, M.S., 2011. "Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system," Energy, Elsevier, vol. 36(8), pages 5081-5093.
    5. Xu, H. & Lin, W.Y. & Dal Magro, F. & Li, T & Py, X. & Romagnoli, A., 2019. "Towards higher energy efficiency in future waste-to-energy plants with novel latent heat storage-based thermal buffer system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 324-337.
    6. Costa, M. & Massarotti, N. & Indrizzi, V. & Rajh, B. & Yin, C. & Samec, N., 2014. "Engineering bed models for solid fuel conversion process in grate-fired boilers," Energy, Elsevier, vol. 77(C), pages 244-253.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:7:p:3008-3021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.