IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i8p1151-1166.html
   My bibliography  Save this article

Alternative depreciation policies for promoting combined heat and power (CHP) development in Brazil

Author

Listed:
  • Soares, Jeferson Borghetti
  • Szklo, Alexandre Salem
  • Tolmasquim, Maurício Tiomno

Abstract

This paper assessed the economic impact of alternative depreciation methods on the development of combined heat-and-power (CHP) systems in the Brazilian industrial sector. Alternative depreciation methods were proposed and the case study of a Brazilian chemical plant showed that the most effective depreciation method for the promotion of CHP plants in Brazil was the Matheson method with an accelerated depreciation schedule of 7 years. This alternative method was then applied to the Brazilian chemical industry as a whole, increasing its installed capacity in CHP systems by 24%. Therefore, fiscal incentives can be an interesting tool for promoting energy efficiency in the Brazilian industrial sector, promoting the expansion of CHP plants. It reduces government fiscal revenues, but it also induces the technological reposition and improves the feasibility of ventures that are not installed without this kind of incentive.

Suggested Citation

  • Soares, Jeferson Borghetti & Szklo, Alexandre Salem & Tolmasquim, Maurício Tiomno, 2006. "Alternative depreciation policies for promoting combined heat and power (CHP) development in Brazil," Energy, Elsevier, vol. 31(8), pages 1151-1166.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:8:p:1151-1166
    DOI: 10.1016/j.energy.2005.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544205001179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2005.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soares, J. B. & Szklo, A. S. & Tolmasquim, M. T., 2001. "Incentive policies for natural gas-fired cogeneration in Brazil's industrial sector -- case studies: chemical plant and pulp mill," Energy Policy, Elsevier, vol. 29(3), pages 205-215, February.
    2. Szklo, Alexandre Salem & Soares, Jeferson Borghetti & Tolmasquim, Mauricio Tiomno, 2004. "Economic potential of natural gas-fired cogeneration--analysis of Brazil's chemical industry," Energy Policy, Elsevier, vol. 32(12), pages 1415-1428, August.
    3. Salem Szklo, Alexandre & Borghetti Soares, Jeferson & Tiomno Tolmasquim, Maurício, 2000. "Economic potential of natural gas-fired cogeneration in Brazil: two case studies," Applied Energy, Elsevier, vol. 67(3), pages 245-263, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Proenza Pérez, Nestor & Titosse Sadamitsu, Marlene & Luz Silveira, Jose & Santana Antunes, Julio & Eduardo Tuna, Celso & Erazo Valle, Atilio & Faria Silva, Natalia, 2015. "Energetic and exergetic analysis of a new compact trigeneration system run with liquefied petroleum gas," Energy, Elsevier, vol. 90(P2), pages 1411-1419.
    2. Zhang, Jian & Cho, Heejin & Knizley, Alta, 2016. "Evaluation of financial incentives for combined heat and power (CHP) systems in U.S. regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 738-762.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schwob, Marcelo Rousseau Valença & Henriques Jr., Maurício & Szklo, Alexandre, 2009. "Technical potential for developing natural gas use in the Brazilian red ceramic industry," Applied Energy, Elsevier, vol. 86(9), pages 1524-1531, September.
    2. Chung, Mo & Park, Chuhwan & Lee, Sukgyu & Park, Hwa-Choon & Im, Yong-Hoon & Chang, Youngho, 2012. "A decision support assessment of cogeneration plant for a community energy system in Korea," Energy Policy, Elsevier, vol. 47(C), pages 365-383.
    3. Szklo, Alexandre Salem & Soares, Jeferson Borghetti & Tolmasquim, Mauricio Tiomno, 2004. "Economic potential of natural gas-fired cogeneration--analysis of Brazil's chemical industry," Energy Policy, Elsevier, vol. 32(12), pages 1415-1428, August.
    4. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    5. Talaei, Alireza & Pier, David & Iyer, Aishwarya V. & Ahiduzzaman, Md & Kumar, Amit, 2019. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry," Energy, Elsevier, vol. 170(C), pages 1051-1066.
    6. Lisa Branchini & Maria Chiara Bignozzi & Benedetta Ferrari & Barbara Mazzanti & Saverio Ottaviano & Marcello Salvio & Claudia Toro & Fabrizio Martini & Andrea Canetti, 2021. "Cogeneration Supporting the Energy Transition in the Italian Ceramic Tile Industry," Sustainability, MDPI, vol. 13(7), pages 1-17, April.
    7. Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
    8. Malagueta, Diego & Szklo, Alexandre & Borba, Bruno Soares Moreira Cesar & Soria, Rafael & Aragão, Raymundo & Schaeffer, Roberto & Dutra, Ricardo, 2013. "Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system," Energy Policy, Elsevier, vol. 59(C), pages 198-212.
    9. Shaaban, M. & Azit, A.H. & Nor, K.M., 2011. "Grid integration policies of gas-fired cogeneration in Peninsular Malaysia: Fallacies and counterexamples," Energy Policy, Elsevier, vol. 39(9), pages 5063-5075, September.
    10. Agrell, Per J. & Bogetoft, Peter, 2005. "Economic and environmental efficiency of district heating plants," Energy Policy, Elsevier, vol. 33(10), pages 1351-1362, July.
    11. Gonzales Palomino, Raul & Nebra, Silvia A., 2012. "The potential of natural gas use including cogeneration in large-sized industry and commercial sector in Peru," Energy Policy, Elsevier, vol. 50(C), pages 192-206.
    12. Tolmasquim, Mauricio Tiomno & Cohen, Claude & Szklo, Alexandre Salem, 2001. "CO2 emissions in the Brazilian industrial sector according to the integrated energy planning model (IEPM)," Energy Policy, Elsevier, vol. 29(8), pages 641-651, June.
    13. Castelo Branco, David A. & Szklo, Alexandre & Gomes, Gabriel & Borba, Bruno S.M.C. & Schaeffer, Roberto, 2011. "Abatement costs of CO2 emissions in the Brazilian oil refining sector," Applied Energy, Elsevier, vol. 88(11), pages 3782-3790.
    14. Malagueta, Diego & Szklo, Alexandre & Soria, Rafael & Dutra, Ricardo & Schaeffer, Roberto & Moreira Cesar Borba, Bruno Soares, 2014. "Potential and impacts of Concentrated Solar Power (CSP) integration in the Brazilian electric power system," Renewable Energy, Elsevier, vol. 68(C), pages 223-235.
    15. Cormio, C. & Dicorato, M. & Minoia, A. & Trovato, M., 2003. "A regional energy planning methodology including renewable energy sources and environmental constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 99-130, April.
    16. Szklo, Alexandre Salem & Tolmasquim, Maurício Tiomno, 2001. "Strategic cogeneration -- fresh horizons for the development of cogeneration in Brazil," Applied Energy, Elsevier, vol. 69(4), pages 257-268, August.
    17. Mujeebu, M.A. & Jayaraj, S. & Ashok, S. & Abdullah, M.Z. & Khalil, M., 2009. "Feasibility study of cogeneration in a plywood industry with power export to grid," Applied Energy, Elsevier, vol. 86(5), pages 657-662, May.
    18. Soares, J. B. & Szklo, A. S. & Tolmasquim, M. T., 2001. "Incentive policies for natural gas-fired cogeneration in Brazil's industrial sector -- case studies: chemical plant and pulp mill," Energy Policy, Elsevier, vol. 29(3), pages 205-215, February.
    19. Mathias, Melissa Cristina & Szklo, Alexandre, 2007. "Lessons learned from Brazilian natural gas industry reform," Energy Policy, Elsevier, vol. 35(12), pages 6478-6490, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:8:p:1151-1166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.