IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i2p345-363.html
   My bibliography  Save this article

Energy analysis of a cogeneration plant using coal gasification and solid oxide fuel cell

Author

Listed:
  • Ghosh, S.
  • De, S.

Abstract

This paper presents a conceptualized combined heat and power (CHP) scheme based on coal gasification and with a high temperature, pressurized solid oxide fuel cell (SOFC) in the topping cycle and a bottoming steam cogeneration cycle. An energy analysis is done for this CHP plant. The study reveals that such a plant offers a substantial saving in fuel with respect to separate plants for the same power and utility heat. The total power of the plant optimizes at a pressure ratio for a given cell operating temperature. However, this optimum pressure ratio increases with higher cell operating temperatures. On the other hand, the utility heat rate decreases with the increasing pressure ratio for any cell operating temperature. In a combined effect of these utility outputs (i.e. power and utility heat), the overall performance of the plant, expressed by fuel energy savings ratio (FESR), is found to optimize at a particular pressure ratio for a given cell operating temperature. For example, the maximum FESR is found to be 30% for an optimum pressure ratio of about 18 for a cell operating temperature of 1273K.

Suggested Citation

  • Ghosh, S. & De, S., 2006. "Energy analysis of a cogeneration plant using coal gasification and solid oxide fuel cell," Energy, Elsevier, vol. 31(2), pages 345-363.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:2:p:345-363
    DOI: 10.1016/j.energy.2005.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544205000137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2005.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silveira, José Luz & Martins Leal, Elisângela & Ragonha, Luiz F, 2001. "Analysis of a molten carbonate fuel cell: cogeneration to produce electricity and cold water," Energy, Elsevier, vol. 26(10), pages 891-904.
    2. Birol, Fatih & Argiri, Maria, 1999. "World energy prospects to 2020," Energy, Elsevier, vol. 24(11), pages 905-918.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiménez-Espadafor Aguilar, Francisco & García, Miguel Torres & Trujillo, Elisa Carvajal & Becerra Villanueva, José Antonio & Florencio Ojeda, Francisco J., 2011. "Prediction of performance, energy savings and increase in profitability of two gas turbine steam generator cogeneration plant, based on experimental data," Energy, Elsevier, vol. 36(2), pages 742-754.
    2. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari & Mousavi, Seyed Ali, 2019. "Evaluation of an optimal integrated design multi-fuel multi-product electrical power plant by energy and exergy analyses," Energy, Elsevier, vol. 169(C), pages 61-78.
    3. Li, Fang-zhou & Kang, Jing-xian & Song, Yun-cai & Feng, Jie & Li, Wen-ying, 2020. "Thermodynamic feasibility for molybdenum-based gaseous oxides assisted looping coal gasification and its derived power plant," Energy, Elsevier, vol. 194(C).
    4. Ashina, Shuichi & Nakata, Toshihiko, 2008. "Quantitative analysis of energy-efficiency strategy on CO2 emissions in the residential sector in Japan - Case study of Iwate prefecture," Applied Energy, Elsevier, vol. 85(4), pages 204-217, April.
    5. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    6. Turan, Onder & Aydin, Hakan, 2014. "Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine," Energy, Elsevier, vol. 74(C), pages 638-650.
    7. Taufiq, Bin Nur & Kikuchi, Yasunori & Ishimoto, Takayoshi & Honda, Kuniaki & Koyama, Michihisa, 2015. "Conceptual design of light integrated gasification fuel cell based on thermodynamic process simulation," Applied Energy, Elsevier, vol. 147(C), pages 486-499.
    8. Prabu, V. & Jayanti, S., 2012. "Underground coal-air gasification based solid oxide fuel cell system," Applied Energy, Elsevier, vol. 94(C), pages 406-414.
    9. Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
    10. Seitarides, Th. & Athanasiou, C. & Zabaniotou, A., 2008. "Modular biomass gasification-based solid oxide fuel cells (SOFC) for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1251-1276, June.
    11. Ashina, Shuichi & Nakata, Toshihiko, 2008. "Energy-efficiency strategy for CO2 emissions in a residential sector in Japan," Applied Energy, Elsevier, vol. 85(2-3), pages 101-114, February.
    12. Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2024. "Assessing the techno-economic viability of a trigeneration system integrating ammonia-fuelled solid oxide fuel cell," Applied Energy, Elsevier, vol. 357(C).
    13. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    2. Cohen, Claude & Lenzen, Manfred & Schaeffer, Roberto, 2005. "Energy requirements of households in Brazil," Energy Policy, Elsevier, vol. 33(4), pages 555-562, March.
    3. Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
    4. Haghighat Mamaghani, Alireza & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2015. "4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 82(C), pages 650-663.
    5. Melikoglu, Mehmet, 2013. "Hydropower in Turkey: Analysis in the view of Vision 2023," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 503-510.
    6. Tănase Zanopol, Andrei & Onea, Florin & Rusu, Eugen, 2014. "Coastal impact assessment of a generic wave farm operating in the Romanian nearshore," Energy, Elsevier, vol. 72(C), pages 652-670.
    7. Boloy, Ronney Arismel Mancebo & Silveira, Jose Luz & Tuna, Celso Eduardo & Coronado, Christian R. & Antunes, Julio Santana, 2011. "Ecological impacts from syngas burning in internal combustion engine: Technical and economic aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5194-5201.
    8. Staicovici, M.D., 2002. "Further research zero CO2 emission power production: the ‘COOLENERG’ process," Energy, Elsevier, vol. 27(9), pages 831-844.
    9. Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.
    10. Raj, N. Thilak & Iniyan, S. & Goic, Ranko, 2011. "A review of renewable energy based cogeneration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3640-3648.
    11. Houcheng Zhang & Jiatang Wang & Jiapei Zhao & Fu Wang & He Miao & Jinliang Yuan, 2019. "Performance Analysis of a Hybrid System Consisting of a Molten Carbonate Direct Carbon Fuel Cell and an Absorption Refrigerator," Energies, MDPI, vol. 12(3), pages 1-13, January.
    12. Pedro Gabana & Francisco V. Tinaut & Miriam Reyes & José Ignacio Domínguez, 2023. "Performance Evaluation of a Fuel Cell mCHP System under Different Configurations of Hydrogen Origin and Heat Recovery," Energies, MDPI, vol. 16(18), pages 1-20, September.
    13. Weber, Céline & Koyama, Michihisa & Kraines, Steven, 2006. "CO2-emissions reduction potential and costs of a decentralized energy system for providing electricity, cooling and heating in an office-building in Tokyo," Energy, Elsevier, vol. 31(14), pages 3041-3061.
    14. Evgeny Lisin & Andrey Rogalev & Wadim Strielkowski & Ivan Komarov, 2015. "Sustainable Modernization of the Russian Power Utilities Industry," Sustainability, MDPI, vol. 7(9), pages 1-23, August.
    15. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    16. Duan, Liqiang & Lu, Hao & Yuan, Mingye & Lv, Zhipeng, 2018. "Optimization and part-load performance analysis of MCFC/ST hybrid power system," Energy, Elsevier, vol. 152(C), pages 682-693.
    17. Jurado, Francisco, 2005. "Robust control for fuel cell–microturbine hybrid power plant using biomass," Energy, Elsevier, vol. 30(10), pages 1711-1727.
    18. Abed, Fayadh M. & Al-Douri, Y. & Al-Shahery, Ghazy. M.Y., 2014. "Review on the energy and renewable energy status in Iraq: The outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 816-827.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:2:p:345-363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.