IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v30y2005i10p1711-1727.html
   My bibliography  Save this article

Robust control for fuel cell–microturbine hybrid power plant using biomass

Author

Listed:
  • Jurado, Francisco

Abstract

A system showing great promise is the integration of gasification with a fuel cell. The emerging high-temperature fuel cells produce very high-temperature exhaust gases that can either be used directly in a combined-cycle or to drive a gas turbine. A high-temperature fuel cell–microturbine combination has the potential to achieve up to 60% efficiency and near-zero emissions. Fuel flexibility enables the use of low-cost indigenous fuels, renewables, and waste materials. The characteristics of gas from biomass gasification may vary significantly. Traditional control design approaches consider a fixed operating point in the hope that the resulting controller is robust enough to stabilize the system for different operating conditions. On the other hand, robust control incorporates the uncertain parameters of the model.

Suggested Citation

  • Jurado, Francisco, 2005. "Robust control for fuel cell–microturbine hybrid power plant using biomass," Energy, Elsevier, vol. 30(10), pages 1711-1727.
  • Handle: RePEc:eee:energy:v:30:y:2005:i:10:p:1711-1727
    DOI: 10.1016/j.energy.2004.08.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204004190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.08.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silveira, José Luz & Martins Leal, Elisângela & Ragonha, Luiz F, 2001. "Analysis of a molten carbonate fuel cell: cogeneration to produce electricity and cold water," Energy, Elsevier, vol. 26(10), pages 891-904.
    2. Akai, Makoto & Nomura, Noboru & Waku, Hideki & Inoue, Masanori, 1997. "Life-cycle analysis of a fossil-fuel power plant with CO2 recovery and a sequestering system," Energy, Elsevier, vol. 22(2), pages 249-255.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damo, U.M. & Ferrari, M.L. & Turan, A. & Massardo, A.F., 2019. "Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy," Energy, Elsevier, vol. 168(C), pages 235-246.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    2. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    3. Tang, YuTing & Ma, XiaoQian & Lai, ZhiYi & Chen, Yong, 2013. "Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China," Energy Policy, Elsevier, vol. 60(C), pages 132-141.
    4. Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
    5. Haghighat Mamaghani, Alireza & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2015. "4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 82(C), pages 650-663.
    6. Ghosh, S. & De, S., 2006. "Energy analysis of a cogeneration plant using coal gasification and solid oxide fuel cell," Energy, Elsevier, vol. 31(2), pages 345-363.
    7. Boloy, Ronney Arismel Mancebo & Silveira, Jose Luz & Tuna, Celso Eduardo & Coronado, Christian R. & Antunes, Julio Santana, 2011. "Ecological impacts from syngas burning in internal combustion engine: Technical and economic aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5194-5201.
    8. Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.
    9. Raj, N. Thilak & Iniyan, S. & Goic, Ranko, 2011. "A review of renewable energy based cogeneration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3640-3648.
    10. Houcheng Zhang & Jiatang Wang & Jiapei Zhao & Fu Wang & He Miao & Jinliang Yuan, 2019. "Performance Analysis of a Hybrid System Consisting of a Molten Carbonate Direct Carbon Fuel Cell and an Absorption Refrigerator," Energies, MDPI, vol. 12(3), pages 1-13, January.
    11. Pedro Gabana & Francisco V. Tinaut & Miriam Reyes & José Ignacio Domínguez, 2023. "Performance Evaluation of a Fuel Cell mCHP System under Different Configurations of Hydrogen Origin and Heat Recovery," Energies, MDPI, vol. 16(18), pages 1-20, September.
    12. Weber, Céline & Koyama, Michihisa & Kraines, Steven, 2006. "CO2-emissions reduction potential and costs of a decentralized energy system for providing electricity, cooling and heating in an office-building in Tokyo," Energy, Elsevier, vol. 31(14), pages 3041-3061.
    13. Wee, Jung-Ho, 2014. "Carbon dioxide emission reduction using molten carbonate fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 178-191.
    14. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    15. Duan, Liqiang & Lu, Hao & Yuan, Mingye & Lv, Zhipeng, 2018. "Optimization and part-load performance analysis of MCFC/ST hybrid power system," Energy, Elsevier, vol. 152(C), pages 682-693.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:30:y:2005:i:10:p:1711-1727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.