IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics036054422403473x.html
   My bibliography  Save this article

A multi-objective bi-level framework to model distribution system operator's behavior in the wholesale and local transactive markets

Author

Listed:
  • Karimi, Hamid
  • Heydarian-Forushani, Ehsan

Abstract

This paper presents a multi-objective bi-level framework to model the distribution system operator's (DSO's) behavior in both wholesale and local electricity markets. The upper level is a multi-objective optimization problem from the DSO point of view including operation cost minimization, flexibility maximization, and peak load minimization. To this end, the DSO could not only participate in the wholesale electricity market at both day-ahead and real-time stages, but also is able to purchase power from renewable generations as well as the private owners. In this regards, the DSO could manage fluctuations of renewable power generations through considering flexibility as an objective function along with cost and peak-shaving. The lower level assigns to the private owner's profit maximization through interactions with the DSO. The DSO also exploits the demand response potential by implementing load shifting programs. The obtained results reveal that the proposed model could reduce the peak load by 6.05 MW and enhance the system flexibility level by 88 %.

Suggested Citation

  • Karimi, Hamid & Heydarian-Forushani, Ehsan, 2024. "A multi-objective bi-level framework to model distribution system operator's behavior in the wholesale and local transactive markets," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s036054422403473x
    DOI: 10.1016/j.energy.2024.133695
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422403473X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rawat, Tanuj & Niazi, K.R. & Gupta, Nikhil & Sharma, Sachin, 2022. "A linearized multi-objective Bi-level approach for operation of smart distribution systems encompassing demand response," Energy, Elsevier, vol. 238(PC).
    2. Tostado-Véliz, Marcos & Kamel, Salah & Aymen, Flah & Jurado, Francisco, 2022. "A novel hybrid lexicographic-IGDT methodology for robust multi-objective solution of home energy management systems," Energy, Elsevier, vol. 253(C).
    3. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    4. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    5. Zhou, Yuekuan & Liu, Xiaohua & Zhao, Qianchuan, 2024. "A stochastic vehicle schedule model for demand response and grid flexibility in a renewable-building-e-transportation-microgrid," Renewable Energy, Elsevier, vol. 221(C).
    6. Gržanić, Mirna & Capuder, Tomislav, 2023. "Collaboration model between Distribution System Operator and flexible prosumers based on a unique dynamic price for electricity and flexibility," Applied Energy, Elsevier, vol. 350(C).
    7. Khajeh, Hosna & Parthasarathy, Chethan & Doroudchi, Elahe & Laaksonen, Hannu, 2023. "Optimized siting and sizing of distribution-network-connected battery energy storage system providing flexibility services for system operators," Energy, Elsevier, vol. 285(C).
    8. Shahbazbegian, Vahid & Shafie-khah, Miadreza & Laaksonen, Hannu & Strbac, Goran & Ameli, Hossein, 2023. "Resilience-oriented operation of microgrids in the presence of power-to-hydrogen systems," Applied Energy, Elsevier, vol. 348(C).
    9. Karimi, Hamid & Jadid, Shahram, 2023. "Multi-layer energy management of smart integrated-energy microgrid systems considering generation and demand-side flexibility," Applied Energy, Elsevier, vol. 339(C).
    10. Babagheibi, Mahsa & Jadid, Shahram & Kazemi, Ahad, 2023. "An Incentive-based robust flexibility market for congestion management of an active distribution system to use the free capacity of Microgrids," Applied Energy, Elsevier, vol. 336(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebrahimi, Mahoor & Ebrahimi, Mahan & Shafie-khah, Miadreza & Laaksonen, Hannu, 2024. "EV-observing distribution system management considering strategic VPPs and active & reactive power markets," Applied Energy, Elsevier, vol. 364(C).
    2. Guo, Tianyu & Guo, Qi & Huang, Libin & Guo, Haiping & Lu, Yuanhong & Tu, Liang, 2023. "Microgrid source-network-load-storage master-slave game optimization method considering the energy storage overcharge/overdischarge risk," Energy, Elsevier, vol. 282(C).
    3. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    4. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    5. Massimiliano Ferrara & Fabio Mottola & Daniela Proto & Antonio Ricca & Maria Valenti, 2024. "Local Energy Community to Support Hydrogen Production and Network Flexibility," Energies, MDPI, vol. 17(15), pages 1-20, July.
    6. Zhaonian Ye & Yongzhen Wang & Kai Han & Changlu Zhao & Juntao Han & Yilin Zhu, 2023. "Bi-Objective Optimization and Emergy Analysis of Multi-Distributed Energy System Considering Shared Energy Storage," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    7. Zhipeng Jing & Lipo Gao & Yu Mu & Dong Liang, 2024. "Flexibility-Constrained Energy Storage System Placement for Flexible Interconnected Distribution Networks," Sustainability, MDPI, vol. 16(20), pages 1-17, October.
    8. Ren, Kezheng & Liu, Jun & Wu, Zeyang & Liu, Xinglei & Nie, Yongxin & Xu, Haitao, 2024. "A data-driven DRL-based home energy management system optimization framework considering uncertain household parameters," Applied Energy, Elsevier, vol. 355(C).
    9. Rabea Jamil Mahfoud & Nizar Faisal Alkayem & Emmanuel Fernandez-Rodriguez & Yuan Zheng & Yonghui Sun & Shida Zhang & Yuquan Zhang, 2024. "Evolutionary Approach for DISCO Profit Maximization by Optimal Planning of Distributed Generators and Energy Storage Systems in Active Distribution Networks," Mathematics, MDPI, vol. 12(2), pages 1-33, January.
    10. Qibo He & Changming Chen & Xin Fu & Shunjiang Yu & Long Wang & Zhenzhi Lin, 2024. "Joint Planning Method of Shared Energy Storage and Multi-Energy Microgrids Based on Dynamic Game with Perfect Information," Energies, MDPI, vol. 17(19), pages 1-20, September.
    11. Huang, Yu & Li, Sijun & Zhang, Peng & Wang, Dongfeng & Lan, Jianjiang & Lee, Kwang Y. & Zhang, Qiliang, 2024. "Parameter adaptive stochastic model predictive control for wind–solar–hydrogen coupled power system," Renewable Energy, Elsevier, vol. 237(PA).
    12. Dewangan, Chaman Lal & Vijayan, Vineeth & Shukla, Devesh & Chakrabarti, S. & Singh, S.N. & Sharma, Ankush & Hossain, Md. Alamgir, 2023. "An improved decentralized scheme for incentive-based demand response from residential customers," Energy, Elsevier, vol. 284(C).
    13. Dai, Bin & Wang, Honglei & Li, Bin & Li, Chengjiang & Tan, Zhukui, 2024. "Capacity model and optimal scheduling strategy of multi-microgrid based on shared energy storage," Energy, Elsevier, vol. 306(C).
    14. Menghwar, Mohan & Yan, Jie & Chi, Yongning & Asim Amin, M. & Liu, Yongqian, 2024. "A market-based real-time algorithm for congestion alleviation incorporating EV demand response in active distribution networks," Applied Energy, Elsevier, vol. 356(C).
    15. Xie, Rui & Wei, Wei & Li, Mingxuan & Dong, ZhaoYang & Mei, Shengwei, 2023. "Sizing capacities of renewable generation, transmission, and energy storage for low-carbon power systems: A distributionally robust optimization approach," Energy, Elsevier, vol. 263(PA).
    16. Wu, Haochi & Qiu, Dawei & Zhang, Liyu & Sun, Mingyang, 2024. "Adaptive multi-agent reinforcement learning for flexible resource management in a virtual power plant with dynamic participating multi-energy buildings," Applied Energy, Elsevier, vol. 374(C).
    17. Meng, He & Jia, Hongjie & Xu, Tao & Wei, Wei & Wu, Yuhan & Liang, Lemeng & Cai, Shuqi & Liu, Zuozheng & Wang, Rujing & Li, Mengchao, 2022. "Optimal configuration of cooperative stationary and mobile energy storage considering ambient temperature: A case for Winter Olympic Game," Applied Energy, Elsevier, vol. 325(C).
    18. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    19. Masoumeh Sharifpour & Mohammad Taghi Ameli & Hossein Ameli & Goran Strbac, 2023. "A Resilience-Oriented Approach for Microgrid Energy Management with Hydrogen Integration during Extreme Events," Energies, MDPI, vol. 16(24), pages 1-18, December.
    20. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Wang, Bo, 2025. "Optimal energy management for prosumers and power plants considering transmission congestion based on carbon emission flow," Applied Energy, Elsevier, vol. 377(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s036054422403473x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.