IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224032936.html
   My bibliography  Save this article

Study on the influence of heave plate on energy capture performance of central pipe oscillating water column wave energy converter

Author

Listed:
  • Yang, Shaohui
  • Zhu, Wenzheng
  • Tu, Yongqiang
  • Cao, Gengning
  • Chen, Xiaokun
  • Du, Zhichang
  • Fan, Jianyu
  • Huang, Yan

Abstract

This paper proposes a novel central pipe oscillating water column (OWC) wave energy converter (WEC) with a heave plate and investigates the influence of heave plate on energy capture performance of the OWC WEC through numerical methods. First, dynamic equations are established for floater and water column. Then, energy capture performance of the WEC is computed by solving relative motion equations using numerical methods. Wave tank experiments are conducted to validate the proposed numerical models. Finally, the influences of heave plate opening diameter and connecting column length on energy capture performance are investigated based on the proposed numerical models. The results indicate that increasing heave plate opening diameter decreases both the maximum capture width ratio (CWR) and response period. And increasing connecting column length widens the response bandwidth. When the heave plate opening diameter decreases from 350 mm to 0, the maximum CWR increases from 30.05 % to 41.68 % and the response period increases from 1.28 s to 1.72 s. When the connecting column length increases from 225 mm to 600 mm, the response band extends by 0.1 s. The proposed device and the obtained analysis results are of great significance for broadband and efficient wave energy generation.

Suggested Citation

  • Yang, Shaohui & Zhu, Wenzheng & Tu, Yongqiang & Cao, Gengning & Chen, Xiaokun & Du, Zhichang & Fan, Jianyu & Huang, Yan, 2024. "Study on the influence of heave plate on energy capture performance of central pipe oscillating water column wave energy converter," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032936
    DOI: 10.1016/j.energy.2024.133517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mandev, Murat Barıs & Altunkaynak, Abdüsselam, 2023. "Cylindrical frontwall entrance geometry optimization of an oscillating water column for utmost hydrodynamic performance," Energy, Elsevier, vol. 280(C).
    2. Wu, Ru-kang & Chen, Yi & Xue, Mu-wen & Wu, Bi-jun & Li, Meng & Zhang, Fu-ming & Zhang, Yun-qiu, 2023. "Influence of circuit on power generation performance of wave energy power generation device using oscillating water column technology," Renewable Energy, Elsevier, vol. 219(P1).
    3. Cheng, Yong & Fu, Lei & Dai, Saishuai & Collu, Maurizio & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Experimental and numerical analysis of a hybrid WEC-breakwater system combining an oscillating water column and an oscillating buoy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2024. "Experimental reconstruction of the local flow field in a Wells turbine using a three-dimensional pressure probe," Energy, Elsevier, vol. 296(C).
    5. Wang, Mangkuan & Shang, Jianzhong & Luo, Zirong & Lu, Zhongyue & Yao, Ganzhou, 2023. "Theoretical and numerical studies on improving absorption power of multi-body wave energy convert device with nonlinear bistable structure," Energy, Elsevier, vol. 282(C).
    6. Liu, Zhen & Zhang, Xiaoxia & Xu, Chuanli, 2023. "Hydrodynamic and energy-harvesting performance of a BBDB-OWC device in irregular waves: An experimental study," Applied Energy, Elsevier, vol. 350(C).
    7. Anastas, Gael & Alfredo Santos, João & Fortes, C.J.E.M. & Pinheiro, Liliana V., 2022. "Energy assessment of potential locations for OWC instalation at the Portuguese coast," Renewable Energy, Elsevier, vol. 200(C), pages 37-47.
    8. Sheng, Wanan, 2019. "Motion and performance of BBDB OWC wave energy converters: I, hydrodynamics," Renewable Energy, Elsevier, vol. 138(C), pages 106-120.
    9. Memmola, Francesco & Contestabile, Pasquale & Falco, Pierpaolo & Brocchini, Maurizio, 2024. "Test Reference Year for wave energy studies: Generation and validation," Renewable Energy, Elsevier, vol. 224(C).
    10. Paduano, Bruno & Parrinello, Luca & Niosi, Francesco & Dell’Edera, Oronzo & Sirigu, Sergej Antonello & Faedo, Nicolás & Mattiazzo, Giuliana, 2024. "Towards standardised design of wave energy converters: A high-fidelity modelling approach," Renewable Energy, Elsevier, vol. 224(C).
    11. Silva, Jorge Marques & Vieira, Susana M. & Valério, Duarte & Henriques, João C.C., 2023. "GA-optimized inverse fuzzy model control of OWC wave power plants," Renewable Energy, Elsevier, vol. 204(C), pages 556-568.
    12. Rosati, Marco & Ringwood, John V., 2023. "Control co-design of power take-off and bypass valve for OWC-based wave energy conversion systems," Renewable Energy, Elsevier, vol. 219(P2).
    13. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. Zhou, Shijie & Cao, Sunliang, 2024. "Co-ordinations of ocean energy supported energy sharing between zero-emission cross-harbour buildings in the Greater Bay Area," Applied Energy, Elsevier, vol. 359(C).
    15. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    16. Guo, Peng & Zhang, Yongliang & Chen, Wenchuang, 2023. "Numerical analysis on a self-rectifying impulse turbine with U-shaped duct for oscillating water column wave energy conversion," Energy, Elsevier, vol. 274(C).
    17. Cheng, Yong & Song, Fukai & Fu, Lei & Dai, Saishuai & Zhiming Yuan, & Incecik, Atilla, 2024. "Experimental investigation of a dual-pontoon WEC-type breakwater with a hydraulic-pneumatic complementary power take-off system," Energy, Elsevier, vol. 286(C).
    18. Shi, Xueli & Liang, Bingchen & Li, Shaowu & Zhao, Jianchun & Wang, Junhui & Wang, Zhenlu, 2024. "Wave energy resource classification system for the China East Adjacent Seas based on multivariate clustering," Energy, Elsevier, vol. 299(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yikuan & Zhang, Yongliang, 2024. "Energy absorption and wave blocking of hybrid system with a backward bent duct buoy and a floating breakwater," Energy, Elsevier, vol. 309(C).
    2. Wanan Sheng & George Aggidis, 2025. "An Experimental Study of a Conventional Cylindrical Oscillating Water Column Wave Energy Converter: Fixed and Floating Devices," Energies, MDPI, vol. 18(3), pages 1-28, January.
    3. Fenu, Beatrice & Henriques, João C.C. & Glorioso, Mattia & Gato, Luís M.C. & Bonfanti, Mauro, 2024. "Real-time Wells turbine simulation on an oscillating-water-column wave energy converter physical model," Applied Energy, Elsevier, vol. 376(PA).
    4. Duan, Derong & Lin, Xiangyang & Wang, Muhao & Liu, Xia & Gao, Changqing & Zhang, Hui & Yang, Xuefeng, 2024. "Study on energy conversion efficiency of wave generation in shake plate mode," Energy, Elsevier, vol. 290(C).
    5. Cheng, Yong & Song, Fukai & Fu, Lei & Dai, Saishuai & Zhiming Yuan, & Incecik, Atilla, 2024. "Experimental investigation of a dual-pontoon WEC-type breakwater with a hydraulic-pneumatic complementary power take-off system," Energy, Elsevier, vol. 286(C).
    6. Pheifer, Chase & Hill, Craig, 2024. "Great Lakes wave energy resource classification and Blue Economy opportunities," Renewable Energy, Elsevier, vol. 235(C).
    7. Adolfo Senatore & Alex De Simone, 2022. "Modeling and Simulation of a Wave Energy Converter: Multibody System Coupled to Fluid-Film Lubrication Model and Thermal Analysis," Energies, MDPI, vol. 15(24), pages 1-13, December.
    8. Martić, Ivana & Degiuli, Nastia & Grlj, Carlo Giorgio, 2024. "Scaling of wave energy converters for optimum performance in the Adriatic Sea," Energy, Elsevier, vol. 294(C).
    9. Canales, Fausto A. & Sapiega, Patryk & Kasiulis, Egidijus & Jonasson, Erik & Temiz, Irina & Jurasz, Jakub, 2024. "Temporal dynamics and extreme events in solar, wind, and wave energy complementarity: Insights from the Polish Exclusive Economic Zone," Energy, Elsevier, vol. 305(C).
    10. Stavropoulou, Charitini & Goude, Anders & Katsidoniotaki, Eirini & Göteman, Malin, 2023. "Fast time-domain model for the preliminary design of a wave power farm," Renewable Energy, Elsevier, vol. 219(P2).
    11. Silva, R.N. & Nunes, M.M. & Oliveira, F.L. & Oliveira, T.F. & Brasil, A.C.P. & Pinto, M.S.S., 2023. "Dynamical analysis of a novel hybrid oceanic tidal-wave energy converter system," Energy, Elsevier, vol. 263(PD).
    12. Dell’Edera, Oronzo & Niosi, Francesco & Casalone, Pietro & Bonfanti, Mauro & Paduano, Bruno & Mattiazzo, Giuliana, 2024. "Understanding wave energy converters dynamics: High-fidelity modeling and validation of a moored floating body," Applied Energy, Elsevier, vol. 376(PA).
    13. Liu, Zhen & Zhang, Xiaoxia & Ding, Lei & Han, Ziqian & Ni, Heqiang, 2024. "Hydrodynamic and energy-harvesting performances of a compact-array OWC device: An experimental study," Energy, Elsevier, vol. 310(C).
    14. Guoyu Zhang & Xiaodong Wang, 2024. "Seawater Desalination System Driven by Sustainable Energy: A Comprehensive Review," Energies, MDPI, vol. 17(22), pages 1-46, November.
    15. Luan, Zhengxiao & Chen, Bangqi & Jin, Ruijia & He, Guanghua & Ghassemi, Hassan & Jing, Penglin, 2024. "Validation of a numerical wave tank based on overset mesh for the wavestar-like wave energy converter in the South China Sea," Energy, Elsevier, vol. 290(C).
    16. Capasso, Salvatore & Tagliafierro, Bonaventura & Martínez-Estévez, Iván & Altomare, Corrado & Gómez-Gesteira, Moncho & Göteman, Malin & Viccione, Giacomo, 2025. "Development of an SPH-based numerical wave–current tank and application to wave energy converters," Applied Energy, Elsevier, vol. 377(PB).
    17. He, Fang & Pan, Jiapeng & Lin, Yuan & Song, Mengxia & Zheng, Siming, 2024. "Laboratory modelling of nonlinear power take-off damping and its effects on an offshore stationary cylindrical OWC device," Energy, Elsevier, vol. 296(C).
    18. Liu, Zhen & Zhang, Xiaoxia & Xu, Chuanli, 2024. "Experimental study on a back-bent duct buoy oscillating water column device in various degrees of freedom," Renewable Energy, Elsevier, vol. 224(C).
    19. Marques Silva, Jorge & Vieira, Susana M. & Valério, Duarte & Henriques, João C.C., 2023. "Model predictive control based on air pressure forecasting of OWC wave power plants," Energy, Elsevier, vol. 284(C).
    20. Liang, Darong & Wu, Baigong & Shu, Yongdong & Zhou, Zhenhu & Zhang, Xiao & Chen, Jianmei & Zhu, Wanqiang & Ji, Qingshan, 2024. "Structural optimization and performance investigation of power flow adaptive flow devices based on multi-body coupling," Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.