IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224032870.html
   My bibliography  Save this article

Integrating domain knowledge into transformer for short-term wind power forecasting

Author

Listed:
  • Cheng, Junhao
  • Luo, Xing
  • Jin, Zhi

Abstract

Wind energy is an environmentally friendly source of energy and serves as an efficient supplement to conventional energy resources. Accurate wind power forecasting is crucial for effective decision-making in the daily operation of wind power plants. However, due to the heavy dependence on weather conditions, the variability and uncertainty associated with weather pose significant challenges to wind power forecasting. In this study, we propose a domain-knowledge integrated Transformer (DKFormer) model for short-term wind power forecasting. The proposed model integrates domain knowledge of wind power generation through three portable modules that play essential roles in data pre-processing, model training, and forecasting stages respectively. Additionally, by constructing boundary constraints that simultaneously utilize the data of both measured wind power and numerical weather prediction (NWP), the DKFormer model further reduces errors in multi-step wind power forecasting and improves overall forecast performance, particularly when input wind speed data exhibits dramatic variations. Furthermore, transfer learning techniques are employed to enhance the forecast capability of the DKFormer model using limited training data. Real-life datasets are used to evaluate the performance of the proposed DKFormer, demonstrating its superiority over conventional statistical models and DL models in short-term wind forecasting. Specifically, in day-ahead wind power forecasting experiments, our proposed DKFormer model achieves a 22.0% reduction in mean absolute error (MAE) while also exhibiting improved forecast stability compared to the conventional Transformer model.

Suggested Citation

  • Cheng, Junhao & Luo, Xing & Jin, Zhi, 2024. "Integrating domain knowledge into transformer for short-term wind power forecasting," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032870
    DOI: 10.1016/j.energy.2024.133511
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.