IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224031967.html
   My bibliography  Save this article

Optimization of a finned multi-tube latent heat storage system using new structure evaluation indexes

Author

Listed:
  • Bie, Yu
  • Tang, Yilian
  • Liu, Weiyi
  • Hnydiuk-Stefan, Anna
  • Gupta, M.K.
  • Królczyk, Jolanta B.
  • Li, Z.

Abstract

The latent heat thermal energy storage (LHTES) is one of the most promising ways of storing solar thermal energy. Since the thermal conductivity of phase change materials are low, traditional shell and tube heat exchangers tend to develop dead zones. Therefore, structural optimization is essential, and a finned multi-tube design is recommended. In this work, nineteen structures for a heat storage tank are designed to explore the influence of different specifications of heat exchange tubes and fins on heat storage/release performance. After establishing 3D physical models, ANSYS/Fluent simulation and a two-step optimization for charging and discharging processes were conducted. Among these structures, N3-M3-D10.2 emerged as the most efficient during charging process in terms of reducing the complete melting time by 25 % and increasing the 3-h heat storage volume by 2.95 times; however, it shows low performance during discharging process, especially with a 2.24 times non-uniformity factor. In the four preferred structures, the benefit-to-cost ratio of N3-M3-D10.2 is 48 %–86.6 % higher than that of the others. The results also show that the number of tubes and fins are negatively related to the melting rate, and positively related to the solidification rate. Moreover, the influence of fin diameter is greater than that of fin number and tube diameter on heat transfer rate. The novelty of this work is not only lies in both considering the charging and discharging processes, but also in using dimensionless normalized indexes and different weights based on customers’ actual requirements for optimization.

Suggested Citation

  • Bie, Yu & Tang, Yilian & Liu, Weiyi & Hnydiuk-Stefan, Anna & Gupta, M.K. & Królczyk, Jolanta B. & Li, Z., 2024. "Optimization of a finned multi-tube latent heat storage system using new structure evaluation indexes," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224031967
    DOI: 10.1016/j.energy.2024.133420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224031967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224031967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.