IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224031451.html
   My bibliography  Save this article

Numerical investigations into the comparison of hydrogen and gas mixtures storage within salt caverns

Author

Listed:
  • Wallace, Richard L.
  • Cai, Zuansi
  • Zhang, Hexin
  • Guo, Chaobin

Abstract

Salt caverns, long used for natural gas storage to manage peak loads, are being considered for hydrogen storage as part of the shift towards greener fuels. This transition necessitates re-evaluating heat and fluid transport to ensure the suitability of storage sites. A comparative analysis between current (natural gas and compressed air) and prospective (hydrogen and gas mixtures) storage systems was conducted using a standardized historical cycle over thirty days to identify trends. Hydrogen exhibited the lowest cumulative temperature and pressure increase (17 °C, 0.40 MPa), but the greatest variability per cycle, with an average range of 26 °C and 1.6 MPa. This higher fluctuation could potentially limit its use in short-term cycles compared to natural gas. Moreover, hydrogen's storage capacity was found to be a third of natural gas's, at only 6.6 GWh for the cavern design and specified pressure limits. These findings indicate that while hydrogen presents a greener alternative, its high variability and lower storage capacity pose challenges for its use in existing infrastructure, highlighting the need for further research to optimize its storage and utilisation in energy systems.

Suggested Citation

  • Wallace, Richard L. & Cai, Zuansi & Zhang, Hexin & Guo, Chaobin, 2024. "Numerical investigations into the comparison of hydrogen and gas mixtures storage within salt caverns," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031451
    DOI: 10.1016/j.energy.2024.133369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224031451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.