IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224024071.html
   My bibliography  Save this article

Design and assessment of an advanced renewable energy system with hydrogen and monomethylhydrazine production for space shuttles

Author

Listed:
  • Meke, Ayse Sinem
  • Dincer, Ibrahim

Abstract

A new renewable energy-driven advanced plant is designed and developed to produce multiple useful outputs, namely electricity, heat, cooling, hydrogen, and monomethylhydrazine (as space shuttle fuel) using solar and wind energies locally available. A specific location needed for this kind of unique work is identified as the Kennedy Space Center (KSC), which is known as located on Merritt Island, in the state of Florida (USA). It is also one of the National Aeronautics and Space Administration's (NASA) ten field centers. Since December 1968, KSC has been NASA's primary launch center of American spaceflight, research, and technology. This paper presents a comprehensive analysis of the subsystems that constitute the newly proposed system potentially for KSC and highlights their complex relationships and synergies. Leveraging renewable energy sources, such as concentrated solar power (CSP) and wind energy, coupled with the subsystem uniquely, such as the regenerative Rankine cycle, multi-stage flash (MSF) desalination unit, hydrogen production process, and Li–Br absorption chiller, the KSC's system maximizes energy conversion efficiency while minimizing environmental impact. Noteworthy outcomes include daily water production of 177.63 kg/s and hydrogen production of 169.61 kg/day, alongside annual energy contributions of 212,692,688 kWh for CSP and 66,158,552 kWh for wind turbines. More than that, it produces 23.04 kg/s MMH as fuel. Additionally, the overall energy and exergy efficiencies of the system are 30.6% and 33% respectively. Despite challenges, such as low efficiencies in certain subsystems, like mono methyl hydrazine (MMH) production, ongoing research and development efforts aim to optimize processes and enhance sustainability.

Suggested Citation

  • Meke, Ayse Sinem & Dincer, Ibrahim, 2024. "Design and assessment of an advanced renewable energy system with hydrogen and monomethylhydrazine production for space shuttles," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224024071
    DOI: 10.1016/j.energy.2024.132633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224024071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224024071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.