IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124012199.html
   My bibliography  Save this article

How does module tracking for agrivoltaics differ from standard photovoltaics? Food, energy, and technoeconomic implications

Author

Listed:
  • Alam, Habeel
  • Butt, Nauman Zafar

Abstract

Module tracking can be an effective approach for spatial-temporal sharing of sunlight between solar modules and crops in agrivoltaics (AV). For desired food-energy yield across various seasons and crops, tracking needs to be customized based on factors including crop type, module array density, economics and social preferences, and policy. Here, we explore customized tracking (CT) along single axis for AV to meet the desired food-energy yield and economic performance for a variety of module configurations and crop types. CT is implemented through a time multiplexing of standard tracking and anti-tracking along the day to balance sunlight between modules and crops, respectively. Module energy and spatial-temporal shading are modeled using the view factor approach while the crop response to shading is modeled empirically. Economic factors including module hardware/soft costs and crop profit are explored to model the economic performance using price-performance ratio. A case study done at Punjab, Pakistan shows that 5 hours of daily standard tracking around noon can ensure 80 % of the typical energy yield targets while maintaining 40 % and 80 % relative biomass yield for crops having high and moderate shade sensitivity, respectively. When module row spacing is increased 2–3 times relative to a typical ground mounted photovoltaic (GMPV) system, biomass yield for crops having high shade sensitivity can be substantially recovered while also improving economic performance. Due to a higher capital cost, 30–40 % increase in feed-in-tariff could be required to make the tracking AV economically competitive to a typical GMPV. The proposed approach can be highly effective for customized module tracking design and economic analysis for AV.

Suggested Citation

  • Alam, Habeel & Butt, Nauman Zafar, 2024. "How does module tracking for agrivoltaics differ from standard photovoltaics? Food, energy, and technoeconomic implications," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124012199
    DOI: 10.1016/j.renene.2024.121151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124012199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valle, B. & Simonneau, T. & Sourd, F. & Pechier, P. & Hamard, P. & Frisson, T. & Ryckewaert, M. & Christophe, A., 2017. "Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops," Applied Energy, Elsevier, vol. 206(C), pages 1495-1507.
    2. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    3. Trommsdorff, Max & Hopf, Michaela & Hörnle, Oliver & Berwind, Matthew & Schindele, Stephan & Wydra, Kerstin, 2023. "Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming," Applied Energy, Elsevier, vol. 350(C).
    4. Feuerbacher, Arndt & Laub, Moritz & Högy, Petra & Lippert, Christian & Pataczek, Lisa & Schindele, Stephan & Wieck, Christine & Zikeli, Sabine, 2021. "An analytical framework to estimate the economics and adoption potential of dual land-use systems: The case of agrivoltaics," Agricultural Systems, Elsevier, vol. 192(C).
    5. Willockx, Brecht & Reher, Thomas & Lavaert, Cas & Herteleer, Bert & Van de Poel, Bram & Cappelle, Jan, 2024. "Design and evaluation of an agrivoltaic system for a pear orchard," Applied Energy, Elsevier, vol. 353(PB).
    6. Dias, Luís & Gouveia, João Pedro & Lourenço, Paulo & Seixas, Júlia, 2019. "Interplay between the potential of photovoltaic systems and agricultural land use," Land Use Policy, Elsevier, vol. 81(C), pages 725-735.
    7. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Tahir, Zamen & Butt, Nauman Zafar, 2022. "Implications of spatial-temporal shading in agrivoltaics under fixed tilt & tracking bifacial photovoltaic panels," Renewable Energy, Elsevier, vol. 190(C), pages 167-176.
    9. Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Aidana Chalgynbayeva & Péter Balogh & László Szőllősi & Zoltán Gabnai & Ferenc Apáti & Marianna Sipos & Attila Bai, 2024. "The Economic Potential of Agrivoltaic Systems in Apple Cultivation—A Hungarian Case Study," Sustainability, MDPI, vol. 16(6), pages 1-34, March.
    11. Ravi, Sujith & Macknick, Jordan & Lobell, David & Field, Christopher & Ganesan, Karthik & Jain, Rishabh & Elchinger, Michael & Stoltenberg, Blaise, 2016. "Colocation opportunities for large solar infrastructures and agriculture in drylands," Applied Energy, Elsevier, vol. 165(C), pages 383-392.
    12. Obane, Hideaki & Nagai, Yu & Asano, Kenji, 2020. "Assessing land use and potential conflict in solar and onshore wind energy in Japan," Renewable Energy, Elsevier, vol. 160(C), pages 842-851.
    13. Patel, M. Tahir & Ahmed, M. Sojib & Imran, Hassan & Butt, Nauman Z. & Khan, M. Ryyan & Alam, Muhammad A., 2021. "Global analysis of next-generation utility-scale PV: Tracking bifacial solar farms," Applied Energy, Elsevier, vol. 290(C).
    14. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    15. Ullah, Asad & Imran, Hassan & Maqsood, Zaki & Butt, Nauman Zafar, 2019. "Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan," Renewable Energy, Elsevier, vol. 139(C), pages 830-843.
    16. Dinesh, Harshavardhan & Pearce, Joshua M., 2016. "The potential of agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 299-308.
    17. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    18. Willockx, Brecht & Lavaert, Cas & Cappelle, Jan, 2023. "Performance evaluation of vertical bifacial and single-axis tracked agrivoltaic systems on arable land," Renewable Energy, Elsevier, vol. 217(C).
    19. Sojib Ahmed, M. & Rezwan Khan, M. & Haque, Anisul & Ryyan Khan, M., 2022. "Agrivoltaics analysis in a techno-economic framework: Understanding why agrivoltaics on rice will always be profitable," Applied Energy, Elsevier, vol. 323(C).
    20. Carole Brunet & Oumarou Savadogo & Pierre Baptiste & Michel A Bouchard & Jean Chrysostome Rakotoary & Andry Ravoninjatovo & Céline Cholez & Corinne Gendron & Nicolas Merveille, 2020. "Impacts Generated by a Large-Scale Solar Photovoltaic Power Plant Can Lead to Conflicts between Sustainable Development Goals: A Review of Key Lessons Learned in Madagascar," Sustainability, MDPI, vol. 12(18), pages 1-33, September.
    21. Trommsdorff, Max & Kang, Jinsuk & Reise, Christian & Schindele, Stephan & Bopp, Georg & Ehmann, Andrea & Weselek, Axel & Högy, Petra & Obergfell, Tabea, 2021. "Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    22. Patel, M. Tahir & Khan, M. Ryyan & Sun, Xingshu & Alam, Muhammad A., 2019. "A worldwide cost-based design and optimization of tilted bifacial solar farms," Applied Energy, Elsevier, vol. 247(C), pages 467-479.
    23. Feuerbacher, Arndt & Herrmann, Tristan & Neuenfeldt, Sebastian & Laub, Moritz & Gocht, Alexander, 2022. "Estimating the economics and adoption potential of agrivoltaics in Germany using a farm-level bottom-up approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgia Di Domenico & Andrea Colantoni & Leonardo Bianchini & Massimo Cecchini & Francesco Gallucci & Valerio Di Stefano, 2025. "Agrivoltaics Systems Potentials in Italy: State of the Art and SWOT–AHP Analysis," Sustainability, MDPI, vol. 17(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    2. Bellone, Yuri & Croci, Michele & Impollonia, Giorgio & Nik Zad, Amirhossein & Colauzzi, Michele & Campana, Pietro Elia & Amaducci, Stefano, 2024. "Simulation-Based Decision Support for Agrivoltaic Systems," Applied Energy, Elsevier, vol. 369(C).
    3. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    4. Sojib Ahmed, M. & Rezwan Khan, M. & Haque, Anisul & Ryyan Khan, M., 2022. "Agrivoltaics analysis in a techno-economic framework: Understanding why agrivoltaics on rice will always be profitable," Applied Energy, Elsevier, vol. 323(C).
    5. Akbar, Asfandyar & Mahmood, Farrukh ibne & Alam, Habeel & Aziz, Farhan & Bashir, Khurram & Zafar Butt, Nauman, 2024. "Field Assessment of Vertical Bifacial Agrivoltaics with Vegetable Production: A Case Study in Lahore, Pakistan," Renewable Energy, Elsevier, vol. 227(C).
    6. Uzair Jamil & Joshua M. Pearce, 2022. "Energy Policy for Agrivoltaics in Alberta Canada," Energies, MDPI, vol. 16(1), pages 1-31, December.
    7. Chopdar, R.K. & Sengar, N. & Giri, Nimay Chandra & Halliday, D., 2024. "Comprehensive review on agrivoltaics with technical, environmental and societal insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    8. Cuppari, Rosa Isabella & Branscomb, Allan & Graham, Maggie & Negash, Fikeremariam & Smith, Angelique Kidd & Proctor, Kyle & Rupp, David & Tilahun Ayalew, Abiyou & Getaneh Tilaye, Gizaw & Higgins, Chad, 2024. "Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale," Applied Energy, Elsevier, vol. 362(C).
    9. Feuerbacher, Arndt & Herrmann, Tristan & Neuenfeldt, Sebastian & Laub, Moritz & Gocht, Alexander, 2022. "Estimating the economics and adoption potential of agrivoltaics in Germany using a farm-level bottom-up approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Tahir, Zamen & Butt, Nauman Zafar, 2022. "Implications of spatial-temporal shading in agrivoltaics under fixed tilt & tracking bifacial photovoltaic panels," Renewable Energy, Elsevier, vol. 190(C), pages 167-176.
    12. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    13. Trommsdorff, Max & Hopf, Michaela & Hörnle, Oliver & Berwind, Matthew & Schindele, Stephan & Wydra, Kerstin, 2023. "Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming," Applied Energy, Elsevier, vol. 350(C).
    14. Jamil, Uzair & Hickey, Thomas & Pearce, Joshua M., 2024. "Solar energy modelling and proposed crops for different types of agrivoltaics systems," Energy, Elsevier, vol. 304(C).
    15. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    16. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    17. Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    18. Daisuke Yajima & Teruya Toyoda & Masaaki Kirimura & Kenji Araki & Yasuyuki Ota & Kensuke Nishioka, 2023. "Estimation Model of Agrivoltaic Systems Maximizing for Both Photovoltaic Electricity Generation and Agricultural Production," Energies, MDPI, vol. 16(7), pages 1-16, April.
    19. Hayibo, Koami Soulemane & Pearce, Joshua M., 2023. "Vertical free-swinging photovoltaic racking energy modeling: A novel approach to agrivoltaics," Renewable Energy, Elsevier, vol. 218(C).
    20. Willockx, Brecht & Reher, Thomas & Lavaert, Cas & Herteleer, Bert & Van de Poel, Bram & Cappelle, Jan, 2024. "Design and evaluation of an agrivoltaic system for a pear orchard," Applied Energy, Elsevier, vol. 353(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124012199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.