IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224024472.html
   My bibliography  Save this article

Performance improvement of air-source autocascade high-temperature heat pumps using advanced exergy analysis

Author

Listed:
  • Ma, Xudong
  • Du, Yanjun
  • Wu, Yuting
  • Lei, Biao

Abstract

Autocascade high-temperature heat pump (AHTHP) have the capacity for significant temperature increases, offering a promising alternative for industrial decarbonization. For a more comprehensive evaluation of the performance improvement potential of an air-source AHTHP, this work proposed a method to select refrigerant blend that has the greatest effect on the performance of an AHTHP by using an advanced exergy analysis. Subsequently, a refrigerant selection for an air-source AHTHP with steam injection technology was performed. The performance enhancement was evaluated under year-round system operating conditions, comparing the selected refrigerant with a refrigerant blend chosen using the conventional thermodynamic method. The results indicate that the refrigerant blend 0.6R245fa/0.4R1234yf, chosen through the advanced exergy analysis, exhibits a more significant capability to enhance heating capacity and output temperature in comparison to the refrigerant 0.5R1233zd(E)/0.5R1234yf, which was chosen through the conventional thermodynamic analysis. When increasing the heating capacity, the average Coefficient of performance (COP) of the refrigerant blend 0.6R245fa/0.4R1234yf at the daily maximum and minimum temperatures increased by 5.60 % and 4.07 %, respectively, while the average power consumption decreased by 6.08 % and 23.81 %, respectively. When increasing the output temperature, the COP difference between the two refrigerant blends is not significant. The average power consumption with 0.6R245fa/0.4R1234yf is 2.19 kW and 2.71 kW at the output temperature is 120 °C and 110 °C respectively, which is lower than the average power consumption with 0.5R1233zd(E)/0.5R1234yf. The results and analysis of this research could provide an effective guidance for enhancing the performance and environmental friendliness of air-source AHTHP.

Suggested Citation

  • Ma, Xudong & Du, Yanjun & Wu, Yuting & Lei, Biao, 2024. "Performance improvement of air-source autocascade high-temperature heat pumps using advanced exergy analysis," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024472
    DOI: 10.1016/j.energy.2024.132673
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224024472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asgari, Sahar & Noorpoor, A.R. & Boyaghchi, Fateme Ahmadi, 2017. "Parametric assessment and multi-objective optimization of an internal auto-cascade refrigeration cycle based on advanced exergy and exergoeconomic concepts," Energy, Elsevier, vol. 125(C), pages 576-590.
    2. Shen, Bo & Han, Yafeng & Price, Lynn & Lu, Hongyou & Liu, Manzhi, 2017. "Techno-economic evaluation of strategies for addressing energy and environmental challenges of industrial boilers in China," Energy, Elsevier, vol. 118(C), pages 526-533.
    3. Elakhdar, M. & Tashtoush, B.M. & Nehdi, E. & Kairouani, L., 2018. "Thermodynamic analysis of a novel Ejector Enhanced Vapor Compression Refrigeration (EEVCR) cycle," Energy, Elsevier, vol. 163(C), pages 1217-1230.
    4. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    5. Ustaoglu, Abid, 2020. "Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach," Energy, Elsevier, vol. 201(C).
    6. Navarro-Esbrí, Joaquín & Fernández-Moreno, Adrián & Mota-Babiloni, Adrián, 2022. "Modelling and evaluation of a high-temperature heat pump two-stage cascade with refrigerant mixtures as a fossil fuel boiler alternative for industry decarbonization," Energy, Elsevier, vol. 254(PB).
    7. Li, Yinlong & Liu, Guoqiang & Chen, Qi & Yan, Gang, 2023. "Progress of auto-cascade refrigeration systems performance improvement: Composition separation, shift and regulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Bai, Tao & Yu, Jianlin & Yan, Gang, 2016. "Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector," Energy, Elsevier, vol. 113(C), pages 385-398.
    9. Yan, Hongzhi & Hu, Bin & Wang, Ruzhu, 2021. "Air-source heat pump heating based water vapor compression for localized steam sterilization applications during the COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Kelly, S. & Tsatsaronis, G. & Morosuk, T., 2009. "Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts," Energy, Elsevier, vol. 34(3), pages 384-391.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Zhili & Wang, Qifan & Xie, Zhiyuan & Liu, Shengchun & Su, Dandan & Cui, Qi, 2019. "Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system," Energy, Elsevier, vol. 170(C), pages 1170-1180.
    2. Mohammadi, Z. & Fallah, M. & Mahmoudi, S.M. Seyed, 2019. "Advanced exergy analysis of recompression supercritical CO2 cycle," Energy, Elsevier, vol. 178(C), pages 631-643.
    3. Feng, Chunyu & Guo, Cong & Chen, Junbin & Tan, Sicong & Jiang, Yuyan, 2024. "Thermodynamic analysis of a dual-pressure evaporation high-temperature heat pump with low GWP zeotropic mixtures for steam generation," Energy, Elsevier, vol. 294(C).
    4. Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
    5. Tan, Yingying & Li, Xiuzhen & Wang, Lin & Huang, Lisheng & Xiao, Yi & Wang, Zhanwei & Li, Shaoqiang, 2023. "Thermodynamic performance of the fractionated auto-cascade refrigeration cycle coupled with two-phase ejector using R1150/R600a at −80 °C temperature level," Energy, Elsevier, vol. 281(C).
    6. Li, Longquan & Liu, Zhiqiang & Deng, Chengwei & Ren, Jingzheng & Ji, Feng & Sun, Yi & Xiao, Zhenyu & Yang, Sheng, 2021. "Conventional and advanced exergy analyses of a vehicular proton exchange membrane fuel cell power system," Energy, Elsevier, vol. 222(C).
    7. Asgari, Sahar & Noorpoor, A.R. & Boyaghchi, Fateme Ahmadi, 2017. "Parametric assessment and multi-objective optimization of an internal auto-cascade refrigeration cycle based on advanced exergy and exergoeconomic concepts," Energy, Elsevier, vol. 125(C), pages 576-590.
    8. Dai, Baomin & Feng, Yining & Liu, Shengchun & Yao, Xiaole & Zhang, Jianing & Wang, Bowen & Wang, Dabiao, 2023. "Dual pressure condensation heating high temperature heat pump using eco-friendly working fluid mixtures for industrial heating processes: 4E analysis," Energy, Elsevier, vol. 283(C).
    9. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    10. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    11. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    12. Jo, Ara & Miftakhova, Alena, 2024. "How constant is constant elasticity of substitution? Endogenous substitution between clean and dirty energy," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    13. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    14. Hao, Xinyue & Wang, Lin & Wang, Zhanwei & Tan, Yingying & Yan, Xiaona, 2018. "Hybrid auto-cascade refrigeration system coupled with a heat-driven ejector cooling cycle," Energy, Elsevier, vol. 161(C), pages 988-998.
    15. Min-Ju Jeon, 2021. "Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 1: Coefficient of Performance Characteristics," Energies, MDPI, vol. 14(18), pages 1-20, September.
    16. Morosuk, T. & Tsatsaronis, G., 2009. "Advanced exergetic evaluation of refrigeration machines using different working fluids," Energy, Elsevier, vol. 34(12), pages 2248-2258.
    17. Gao, Datong & Zhong, Shuai & Ren, Xiao & Kwan, Trevor Hocksun & Pei, Gang, 2022. "The energetic, exergetic, and mechanical comparison of two structurally optimized non-concentrating solar collectors for intermediate temperature applications," Renewable Energy, Elsevier, vol. 184(C), pages 881-898.
    18. Jian Wang & Qianggang Wang & Niancheng Zhou & Yuan Chi, 2017. "A Novel Electricity Transaction Mode of Microgrids Based on Blockchain and Continuous Double Auction," Energies, MDPI, vol. 10(12), pages 1-22, November.
    19. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.
    20. Zhu, Tingting & Vieren, Elias & Liang, Jierong & Thorsen, Jan Eric & De Paepe, Michel & Lecompte, Steven & Elmegaard, Brian, 2024. "Booster heat pump with drop-in zeotropic mixtures applied in ultra-low temperature district heating system," Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.