IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipbs0360544222012117.html
   My bibliography  Save this article

Modelling and evaluation of a high-temperature heat pump two-stage cascade with refrigerant mixtures as a fossil fuel boiler alternative for industry decarbonization

Author

Listed:
  • Navarro-Esbrí, Joaquín
  • Fernández-Moreno, Adrián
  • Mota-Babiloni, Adrián

Abstract

High-Temperature Heat Pump (HTHP) is becoming a feasible technology for decarbonization, being proposed as an alternative to fossil fuel boilers in several industrial, commercial, and urban applications. This work presents a semi-empirical assessment of a two-stage cascade cycle for HTHP applications to produce hot water up to 150 °C from a water flow at 35 °C and 25 °C. This work uses experimental results of two single-stage heat pump prototypes (R-1234ze(E) and R-1336mzz(Z)) with different temperature lifts as baseline inputs. The energy performance of the proposed two stage cascade HTHP is evaluated through a semi-empirical model, including several novel mixtures for both stages. Up to 14% of COP increase was reached respect to the baseline when using R-152a/600 (0.08/0.92) and R-1233zd(E)/161 (0.88/0.12) for the low stage and high stage, respectively. The VHC increases 30% with the selected combinations, but the discharge temperature also rises. Direct CO2e emissions were negligible by using low GWP refrigerants. The country proposed for the two-stage cascade HTHP greatly influences greenhouse gas indirect CO2e emissions. It is estimated that in countries carbon emission factor lower than 0.35 kgCO2e kWh−1 the mixtures selected would reduce the emissions compared to fossil fuel boilers for the same heating capacity.

Suggested Citation

  • Navarro-Esbrí, Joaquín & Fernández-Moreno, Adrián & Mota-Babiloni, Adrián, 2022. "Modelling and evaluation of a high-temperature heat pump two-stage cascade with refrigerant mixtures as a fossil fuel boiler alternative for industry decarbonization," Energy, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222012117
    DOI: 10.1016/j.energy.2022.124308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222012117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Di & Hu, Bin & Wang, R.Z. & Fan, Haibin & Wang, Rujin, 2020. "The performance comparison of high temperature heat pump among R718 and other refrigerants," Renewable Energy, Elsevier, vol. 154(C), pages 715-722.
    2. Xu, Liangfeng & Li, Enteng & Xu, Yingjie & Mao, Ning & Shen, Xi & Wang, Xinlei, 2020. "An experimental energy performance investigation and economic analysis on a cascade heat pump for high-temperature water in cold region," Renewable Energy, Elsevier, vol. 152(C), pages 674-683.
    3. Urbanucci, Luca & Bruno, Joan Carles & Testi, Daniele, 2019. "Thermodynamic and economic analysis of the integration of high-temperature heat pumps in trigeneration systems," Applied Energy, Elsevier, vol. 238(C), pages 516-533.
    4. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Barco-Burgos, J. & Bruno, J.C. & Eicker, U. & Saldaña-Robles, A.L. & Alcántar-Camarena, V., 2022. "Review on the integration of high-temperature heat pumps in district heating and cooling networks," Energy, Elsevier, vol. 239(PE).
    6. Mikielewicz, Dariusz & Wajs, Jan, 2019. "Performance of the very high-temperature heat pump with low GWP working fluids," Energy, Elsevier, vol. 182(C), pages 460-470.
    7. Zou, Huiming & Li, Xuan & Tang, Mingsheng & Wu, Jiang & Tian, Changqing & Butrymowicz, Dariusz & Ma, Yongde & Wang, Jin, 2020. "Temperature stage matching and experimental investigation of high-temperature cascade heat pump with vapor injection," Energy, Elsevier, vol. 212(C).
    8. Zühlsdorf, Benjamin & Jensen, Jonas Kjær & Cignitti, Stefano & Madsen, Claus & Elmegaard, Brian, 2018. "Analysis of temperature glide matching of heat pumps with zeotropic working fluid mixtures for different temperature glides," Energy, Elsevier, vol. 153(C), pages 650-660.
    9. Bergamini, Riccardo & Jensen, Jonas Kjær & Elmegaard, Brian, 2019. "Thermodynamic competitiveness of high temperature vapor compression heat pumps for boiler substitution," Energy, Elsevier, vol. 182(C), pages 110-121.
    10. Wu, Zhangxiang & Wang, Xiaoyan & Sha, Li & Li, Xiaoqiong & Yang, Xiaochen & Ma, Xuelian & Zhang, Yufeng, 2021. "Performance analysis and multi-objective optimization of the high-temperature cascade heat pump system," Energy, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    2. Dai, Baomin & Feng, Yining & Liu, Shengchun & Yao, Xiaole & Zhang, Jianing & Wang, Bowen & Wang, Dabiao, 2023. "Dual pressure condensation heating high temperature heat pump using eco-friendly working fluid mixtures for industrial heating processes: 4E analysis," Energy, Elsevier, vol. 283(C).
    3. Ma, Xudong & Du, Yanjun & Wu, Yuting & Lei, Biao, 2024. "Performance improvement of air-source autocascade high-temperature heat pumps using advanced exergy analysis," Energy, Elsevier, vol. 307(C).
    4. Obika, Echezona & Heberle, Florian & Brüggemann, Dieter, 2024. "Thermodynamic analysis of novel mixtures including siloxanes and cyclic hydrocarbons for high-temperature heat pumps," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Changchun & Han, Wei & Xue, Xiaodong, 2022. "Experimental investigation of a high-temperature heat pump for industrial steam production," Applied Energy, Elsevier, vol. 312(C).
    2. Jian Sun & Yinwu Wang & Yu Qin & Guoshun Wang & Ran Liu & Yongping Yang, 2023. "A Review of Super-High-Temperature Heat Pumps over 100 °C," Energies, MDPI, vol. 16(12), pages 1-18, June.
    3. Wu, Jinxing & Sun, Shoujun & Song, Qinglu & Sun, Dandan & Wang, Dechang & Li, Jiaxu, 2023. "Energy, exergy, exergoeconomic and environmental (4E) analysis of cascade heat pump, recuperative heat pump and carbon dioxide heat pump with different temperature lifts," Renewable Energy, Elsevier, vol. 207(C), pages 407-421.
    4. Zhang, Hongwei & Geng, Xudong & Shao, Shuangquan & Si, Chunqiang & Wang, Zhichao, 2022. "Performance analysis of a R134a/CO2 cascade heat pump in severe cold regions of China," Energy, Elsevier, vol. 239(PE).
    5. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    6. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Jouhara, Hussam & Żabnieńska-Góra, Alina & Delpech, Bertrand & Olabi, Valentina & El Samad, Tala & Sayma, Abdulnaser, 2024. "High-temperature heat pumps: Fundamentals, modelling approaches and applications," Energy, Elsevier, vol. 303(C).
    9. Jakub Szymiczek & Krzysztof Szczotka & Marian Banaś & Przemysław Jura, 2022. "Efficiency of a Compressor Heat Pump System in Different Cycle Designs: A Simulation Study for Low-Enthalpy Geothermal Resources," Energies, MDPI, vol. 15(15), pages 1-19, July.
    10. Cox, Jordan & Belding, Scott & Lowder, Travis, 2022. "Application of a novel heat pump model for estimating economic viability and barriers of heat pumps in dairy applications in the United States," Applied Energy, Elsevier, vol. 310(C).
    11. Obika, Echezona & Heberle, Florian & Brüggemann, Dieter, 2024. "Thermodynamic analysis of novel mixtures including siloxanes and cyclic hydrocarbons for high-temperature heat pumps," Energy, Elsevier, vol. 294(C).
    12. Lin, Ying & Fan, Yubin & Yu, Meng & Jiang, Long & Zhang, Xuejun, 2022. "Performance investigation on an air source heat pump system with latent heat thermal energy storage," Energy, Elsevier, vol. 239(PA).
    13. Obrist, Michel D. & Kannan, Ramachandran & McKenna, Russell & Schmidt, Thomas J. & Kober, Tom, 2023. "High-temperature heat pumps in climate pathways for selected industry sectors in Switzerland," Energy Policy, Elsevier, vol. 173(C).
    14. Giuseppe Emmi & Sara Bordignon & Laura Carnieletto & Michele De Carli & Fabio Poletto & Andrea Tarabotti & Davide Poletto & Antonio Galgaro & Giulia Mezzasalma & Adriana Bernardi, 2020. "A Novel Ground-Source Heat Pump with R744 and R1234ze as Refrigerants," Energies, MDPI, vol. 13(21), pages 1-18, October.
    15. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    16. Mohammadnia, Ali & Iov, Florin & Rasmussen, Morten Karstoft & Nielsen, Mads Pagh, 2024. "Feasibility assessment of next-generation smart district heating networks by intelligent energy management strategies," Energy, Elsevier, vol. 296(C).
    17. Cheng, Jia-Hao & Cao, Xiang & Shao, Liang-Liang & Zhang, Chun-Lu, 2023. "Performance evaluation of a novel heat pump system for drying with EVI-compressor driven precooling and reheating," Energy, Elsevier, vol. 278(PB).
    18. Wu, Di & Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Sun, Yan, 2024. "Experimental investigation and industrial application of a cascade air-source high temperature heat pump," Renewable Energy, Elsevier, vol. 232(C).
    19. Guo, Hao & Gong, Maoqiong & Qin, Xiaoyu, 2019. "Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump," Applied Energy, Elsevier, vol. 237(C), pages 338-352.
    20. Ouyang, Tiancheng & Su, Zixiang & Yang, Rui & Wang, Zhiping & Mo, Xiaoyu & Huang, Haozhong, 2021. "Advanced waste heat harvesting strategy for marine dual-fuel engine considering gas-liquid two-phase flow of turbine," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222012117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.