IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224024150.html
   My bibliography  Save this article

Windage loss characterisation for flywheel energy storage system: Model and experimental validation

Author

Listed:
  • Venturini, Simone
  • Cavallaro, Salvatore Paolo
  • Vigliani, Alessandro

Abstract

In this paper, a windage loss characterisation strategy for Flywheel Energy Storage Systems (FESS) is presented. An effective windage loss modelling in FESS is essential for feasible and competitive design. Unlike generic aerodynamic loss models, FESS require particular attention to their unique characteristics i.e., vacuum, small airgaps, high angular speed, and presence of low friction rotor supports.

Suggested Citation

  • Venturini, Simone & Cavallaro, Salvatore Paolo & Vigliani, Alessandro, 2024. "Windage loss characterisation for flywheel energy storage system: Model and experimental validation," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024150
    DOI: 10.1016/j.energy.2024.132641
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224024150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rastegarzadeh, Sina & Mahzoon, Mojtaba & Mohammadi, Hossein, 2020. "A novel modular designing for multi-ring flywheel rotor to optimize energy consumption in light metro trains," Energy, Elsevier, vol. 206(C).
    2. Chow-Shing Toh & Shyh-Leh Chen, 2016. "Design, Modeling and Control of Magnetic Bearings for a Ring-Type Flywheel Energy Storage System," Energies, MDPI, vol. 9(12), pages 1-19, December.
    3. Mustafa E. Amiryar & Keith R. Pullen, 2020. "Analysis of Standby Losses and Charging Cycles in Flywheel Energy Storage Systems," Energies, MDPI, vol. 13(17), pages 1-22, August.
    4. Suzuki, Y. & Koyanagi, A. & Kobayashi, M. & Shimada, R., 2005. "Novel applications of the flywheel energy storage system," Energy, Elsevier, vol. 30(11), pages 2128-2143.
    5. Boukettaya, Ghada & Krichen, Lotfi & Ouali, Abderrazak, 2010. "A comparative study of three different sensorless vector control strategies for a Flywheel Energy Storage System," Energy, Elsevier, vol. 35(1), pages 132-139.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    2. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    3. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    4. Cheng Gong & Shiwen Zhang & Feng Zhang & Jianguo Jiang & Xinheng Wang, 2014. "An Integrated Energy-Efficient Operation Methodology for Metro Systems Based on a Real Case of Shanghai Metro Line One," Energies, MDPI, vol. 7(11), pages 1-25, November.
    5. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    6. Fei Lin & Shihui Liu & Zhihong Yang & Yingying Zhao & Zhongping Yang & Hu Sun, 2016. "Multi-Train Energy Saving for Maximum Usage of Regenerative Energy by Dwell Time Optimization in Urban Rail Transit Using Genetic Algorithm," Energies, MDPI, vol. 9(3), pages 1-21, March.
    7. Mauro Andriollo & Roberto Benato & Andrea Tortella, 2020. "Design and Modeling of an Integrated Flywheel Magnetic Suspension for Kinetic Energy Storage Systems," Energies, MDPI, vol. 13(4), pages 1-22, February.
    8. Cipek, Mihael & Pavković, Danijel & Krznar, Matija & Kljaić, Zdenko & Mlinarić, Tomislav Josip, 2021. "Comparative analysis of conventional diesel-electric and hypothetical battery-electric heavy haul locomotive operation in terms of fuel savings and emissions reduction potentials," Energy, Elsevier, vol. 232(C).
    9. Zhang, Lang & He, Deqiang & He, Yan & Liu, Bin & Chen, Yanjun & Shan, Sheng, 2022. "Real-time energy saving optimization method for urban rail transit train timetable under delay condition," Energy, Elsevier, vol. 258(C).
    10. Boukettaya, Ghada & Krichen, Lotfi & Ouali, Abderrazak, 2010. "A comparative study of three different sensorless vector control strategies for a Flywheel Energy Storage System," Energy, Elsevier, vol. 35(1), pages 132-139.
    11. Rastegarzadeh, Sina & Mahzoon, Mojtaba & Mohammadi, Hossein, 2020. "A novel modular designing for multi-ring flywheel rotor to optimize energy consumption in light metro trains," Energy, Elsevier, vol. 206(C).
    12. Abdulilah Mohammad Mayet & Seyed Mehdi Alizadeh & Karina Shamilyevna Nurgalieva & Robert Hanus & Ehsan Nazemi & Igor M. Narozhnyy, 2022. "Extraction of Time-Domain Characteristics and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitoring Systems," Energies, MDPI, vol. 15(6), pages 1-19, March.
    13. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    14. Yu Jia & Zhenkui Wu & Jihong Zhang & Peihong Yang & Zilei Zhang, 2022. "Control Strategy of Flywheel Energy Storage System Based on Primary Frequency Modulation of Wind Power," Energies, MDPI, vol. 15(5), pages 1-14, March.
    15. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    16. Mohammad Reza, Alizadeh Pahlavani & Ali, Mohammadpour Hossine, 2010. "An optimized SVPWM switching strategy for three-level NPC VSI and a novel switching strategy for three-level two-quadrant chopper to stabilize the voltage of capacitors," Energy, Elsevier, vol. 35(12), pages 4917-4931.
    17. Li, Jianwei & Gee, Anthony M. & Zhang, Min & Yuan, Weijia, 2015. "Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model," Energy, Elsevier, vol. 86(C), pages 175-185.
    18. Arani, A.A. Khodadoost & Karami, H. & Gharehpetian, G.B. & Hejazi, M.S.A., 2017. "Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 9-18.
    19. Mohammad Reza, Alizadeh Pahlavani & Hossine Ali, Mohammadpour & Abbas, Shoulaie, 2010. "Voltage stabilization of VSI SMES capacitors and voltage sag compensation by SMES using novel switching strategies," Energy, Elsevier, vol. 35(8), pages 3131-3142.
    20. Virulkar, Vasudeo & Aware, Mohan & Kolhe, Mohan, 2011. "Integrated battery controller for distributed energy system," Energy, Elsevier, vol. 36(5), pages 2392-2398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.