IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics036054422402156x.html
   My bibliography  Save this article

Energy and exergy analysis of dry and steam external reformers for a power cycle based on biogas-fueled solid oxide fuel cell

Author

Listed:
  • Soleimanpour, Mohammad
  • Ebrahimi, Masood

Abstract

In the present research a cogeneration cycle based on a solid oxide fuel cell (SOFC), and Organic Rankine Cycle (ORC) is proposed. The cycle is fed with biogas in different molar ratios of carbon dioxide to methane (RCTC). In addition, the cycle is examined for both dry reforming (DR) and steam reforming (SR). A thermochemical model is presented for both cycles of SR–SOFC–ORC, and DR–SOFC–ORC. The model is coded in MATLAB coupled with Engineering Equation Solver software. The model was verified with both experimental and theoretical research and agreement was achieved. The energy and exergy performance of the cycle is presented and carbon deposition on the cathode due to different reactions of methane cracking, Boudouard reaction, and vapor formation are studied. The results show that for RCTC<1.2 steam reforming produces more hydrogen, while for RCTC>1.2 dry reforming is advantageous. At RCTC = 1.2 the DR and SR work the same. The overall thermal efficiency of DR-SOFC and SR-SOFC has reached 67 % and 70 %. Carbon deposition due to the Boudouard reaction, and vapor formation for both SR and DR are negligible while due to methane cracking is serious. The DR-SOFC deposits less carbon because of methane cracking due to higher operating temperatures.

Suggested Citation

  • Soleimanpour, Mohammad & Ebrahimi, Masood, 2024. "Energy and exergy analysis of dry and steam external reformers for a power cycle based on biogas-fueled solid oxide fuel cell," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s036054422402156x
    DOI: 10.1016/j.energy.2024.132382
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422402156X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132382?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gandiglio, Marta, 2022. "Design and operation of an industrial size adsorption-based cleaning system for biogas use in fuel cells," Energy, Elsevier, vol. 259(C).
    2. Chatrattanawet, Narissara & Saebea, Dang & Authayanun, Suthida & Arpornwichanop, Amornchai & Patcharavorachot, Yaneeporn, 2018. "Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches," Energy, Elsevier, vol. 146(C), pages 131-140.
    3. Moradpoor, Iraj & Ebrahimi, Masood, 2019. "Thermo-environ analyses of a novel trigeneration cycle based on clean technologies of molten carbonate fuel cell, stirling engine and Kalina cycle," Energy, Elsevier, vol. 185(C), pages 1005-1016.
    4. Oluleye, Gbemi & Gandiglio, Marta & Santarelli, Massimo & Hawkes, Adam, 2021. "Pathways to commercialisation of biogas fuelled solid oxide fuel cells in European wastewater treatment plants," Applied Energy, Elsevier, vol. 282(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Kang Ying & Liew, Peng Yen & Woon, Kok Sin & Ho, Wai Shin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2023. "Multi-period multi-objective optimisation model for multi-energy urban-industrial symbiosis with heat, cooling, power and hydrogen demands," Energy, Elsevier, vol. 262(PA).
    2. Rhee, Chaeyoung & Park, Sung-Gwan & Yu, Sung Il & Dalantai, Tergel & Shin, Juhee & Chae, Kyu-Jung & Shin, Seung Gu, 2023. "Mapping microbial dynamics in anaerobic digestion system linked with organic composition of substrates: Protein and lipid," Energy, Elsevier, vol. 275(C).
    3. Majidniya, Mahdi & Remy, Benjamin & Boileau, Thierry & Zandi, Majid, 2021. "Free Piston Stirling Engine as a new heat recovery option for an Internal Reforming Solid Oxide Fuel Cell," Renewable Energy, Elsevier, vol. 171(C), pages 1188-1201.
    4. Eydhah Almatrafi & Abdul Khaliq & Rajesh Kumar & Ahmad Bamasag & Muhammad Ehtisham Siddiqui, 2023. "Proposal and Investigation of a New Tower Solar Collector-Based Trigeneration Energy System," Sustainability, MDPI, vol. 15(9), pages 1-22, May.
    5. Costas Athanasiou & Christos Drosakis & Gaylord Kabongo Booto & Costas Elmasides, 2022. "Economic Feasibility of Power/Heat Cogeneration by Biogas–Solid Oxide Fuel Cell (SOFC) Integrated Systems," Energies, MDPI, vol. 16(1), pages 1-30, December.
    6. Lyu, Zewei & Meng, Hao & Zhu, Jianzhong & Han, Minfang & Sun, Zaihong & Xue, Huaqing & Zhao, Yongming & Zhang, Fudong, 2020. "Comparison of off-gas utilization modes for solid oxide fuel cell stacks based on a semi-empirical parametric model," Applied Energy, Elsevier, vol. 270(C).
    7. Soleymani, Elahe & Ghaebi, Hadi & Heydari, Amir & Javani, Nader, 2024. "Thermodynamic analysis and examining the effects of parameters in BSR-HDH system using response surface methodology," Renewable Energy, Elsevier, vol. 226(C).
    8. Jacob Dalder & Gbemi Oluleye & Carla Cannone & Rudolf Yeganyan & Naomi Tan & Mark Howells, 2024. "Modelling Policy Pathways to Maximise Renewable Energy Growth and Investment in the Democratic Republic of the Congo Using OSeMOSYS (Open Source Energy Modelling System)," Energies, MDPI, vol. 17(2), pages 1-27, January.
    9. Mahdavi, Navid & Mojaver, Parisa & Khalilarya, Shahram, 2022. "Multi-objective optimization of power, CO2 emission and exergy efficiency of a novel solar-assisted CCHP system using RSM and TOPSIS coupled method," Renewable Energy, Elsevier, vol. 185(C), pages 506-524.
    10. Liu, He & Qin, Jiang & Li, Chenghao & Wang, Jingyi & Wang, Cong & Dong, Peng, 2024. "Numerical performance analysis of the solid oxide fuel cell for aviation hybrid power system," Energy, Elsevier, vol. 287(C).
    11. Sobhan Jehandideh & Hasan Hassanzade & Seyyed Ehsan Shakib, 2021. "Environmental assessment of a hybrid system composed of solid oxide fuel cell, gas turbine and multiple effect evaporation desalination system," Energy & Environment, , vol. 32(5), pages 874-901, August.
    12. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    13. Mehrabian, Morteza & Mahmoudimehr, Javad, 2023. "A correlation for optimal steam-to-fuel ratio in a biogas-fueled solid oxide fuel cell with internal steam reforming by using Artificial Neural Networks," Renewable Energy, Elsevier, vol. 219(P1).
    14. Dehghani, Mohammad Javad & Yoo, ChangKyoo, 2020. "Three-step modification and optimization of Kalina power-cooling cogeneration based on energy, pinch, and economics analyses," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s036054422402156x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.