IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224030287.html
   My bibliography  Save this article

Design of multi-cycle organic Rankine cycle systems for low-grade heat utilisation

Author

Listed:
  • Lee, Jui-Yuan
  • Chen, Po-Ling
  • Xie, Pei-Shan
  • Bandyopadhyay, Santanu

Abstract

Organic Rankine cycles (ORCs) facilitate the utilisation of low-grade heat sources (e.g., geothermal and industrial waste heat) for power generation, thereby improving energy efficiency in industrial processes and expanding the application of renewable energy. Using multiple ORCs instead of a single cycle provides more flexibility in heat integration and can increase the power output. This paper presents a mathematical model for designing multi-ORC systems; the design task involves the determination of ORC configurations and operating conditions whilst synthesising the associated heat exchanger network. Two case studies on geothermal and industrial waste heat ORC applications illustrate the developed optimisation formulation. In the geothermal case study, the maximum net power output for a single regenerative n-butane cycle can increase by 11.2 % as a result of optimising the ORC operating conditions. With two independent n-pentane cycles, a 7.6 % increase in the maximum net power output can be reached by optimising the ORC configurations. In the industrial waste heat case study, a 14.3 % increase in the maximum net power generation is found with a second n-butane cycle, and a further 5.7 % increase with a third. For comparison, the total annual cost and the payback period are also calculated in both case studies.

Suggested Citation

  • Lee, Jui-Yuan & Chen, Po-Ling & Xie, Pei-Shan & Bandyopadhyay, Santanu, 2024. "Design of multi-cycle organic Rankine cycle systems for low-grade heat utilisation," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030287
    DOI: 10.1016/j.energy.2024.133252
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224030287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.