IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v303y2024ics0360544224018036.html
   My bibliography  Save this article

Bi-level robust planning of hydrogen energy system for integrated electricity–heat–hydrogen energy system considering multimode utilization of hydrogen

Author

Listed:
  • Zeng, Guihua
  • Liu, Mingbo
  • Lei, Zhenxing
  • Huang, Xinyi

Abstract

This paper proposes a bi-level robust planning model to address the rational configuration of a hydrogen energy system, accounting for the impact of wind power uncertainty in an integrated electricity–heat–hydrogen energy system (IEHHES) with the increasing wind power penetration. The upper-level problem aims to determine the capacity of the hydrogen energy system in this system, whereas the lower-level problem is formulated as a two-stage robust optimization model to simulate the typical daily operational scheme of the system, considering uncertain wind turbine output and the on/off switching of devices. This model considers multiple hydrogen utilization modes and the physical characteristics of various hydrogen storage tanks. The complex bi-level robust model is intractable directly. Therefore, this bi-level robust planning model is initially decomposed into planning and operation subproblems. These subproblems are then can be solved in parallel using the alternating direction method of multipliers (ADMM) algorithm; the planning subproblem, a quadratic programming model, is solved using a commercial solver; the operating subproblem, a two-stage robust optimization model, is solved using the column and constraint generation algorithm. Finally, case studies validate the advantages and effectiveness of the developed model and algorithm.

Suggested Citation

  • Zeng, Guihua & Liu, Mingbo & Lei, Zhenxing & Huang, Xinyi, 2024. "Bi-level robust planning of hydrogen energy system for integrated electricity–heat–hydrogen energy system considering multimode utilization of hydrogen," Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224018036
    DOI: 10.1016/j.energy.2024.132029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Yue & Zhou, Suyang & Wang, Jihua & Chou, Jun & Fang, Yunhui & Pan, Guangsheng & Gu, Wei, 2020. "Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: Case studies in China," Applied Energy, Elsevier, vol. 269(C).
    2. Abeysekera, M. & Wu, J. & Jenkins, N. & Rees, M., 2016. "Steady state analysis of gas networks with distributed injection of alternative gas," Applied Energy, Elsevier, vol. 164(C), pages 991-1002.
    3. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Yang, Hongming & Liang, Rui & Yuan, Yuan & Chen, Bowen & Xiang, Sheng & Liu, Junpeng & Zhao, Huan & Ackom, Emmanuel, 2022. "Distributionally robust optimal dispatch in the power system with high penetration of wind power based on net load fluctuation data," Applied Energy, Elsevier, vol. 313(C).
    5. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    6. Qiu, Yibin & Li, Qi & Wang, Tianhong & Yin, Liangzhen & Chen, Weirong & Liu, Hong, 2022. "Optimal planning of Cross-regional hydrogen energy storage systems considering the uncertainty," Applied Energy, Elsevier, vol. 326(C).
    7. Pan, Guangsheng & Gu, Wei & Qiu, Haifeng & Lu, Yuping & Zhou, Suyang & Wu, Zhi, 2020. "Bi-level mixed-integer planning for electricity-hydrogen integrated energy system considering levelized cost of hydrogen," Applied Energy, Elsevier, vol. 270(C).
    8. Le, Tay Son & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Ngo, Tuan Duc, 2023. "Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage," Applied Energy, Elsevier, vol. 336(C).
    9. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    10. Chen, Xianqing & Dong, Wei & Yang, Lingfang & Yang, Qiang, 2023. "Scenario-based robust capacity planning of regional integrated energy systems considering carbon emissions," Renewable Energy, Elsevier, vol. 207(C), pages 359-375.
    11. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    12. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    13. Shi, Mengshu & Wang, Weiye & Han, Yaxuan & Huang, Yuansheng, 2022. "Research on comprehensive benefit of hydrogen storage in microgrid system," Renewable Energy, Elsevier, vol. 194(C), pages 621-635.
    14. Bensmann, B. & Hanke-Rauschenbach, R. & Müller-Syring, G. & Henel, M. & Sundmacher, K., 2016. "Optimal configuration and pressure levels of electrolyzer plants in context of power-to-gas applications," Applied Energy, Elsevier, vol. 167(C), pages 107-124.
    15. Li, Qi & Xiao, Xukang & Pu, Yuchen & Luo, Shuyu & Liu, Hong & Chen, Weirong, 2023. "Hierarchical optimal scheduling method for regional integrated energy systems considering electricity-hydrogen shared energy," Applied Energy, Elsevier, vol. 349(C).
    16. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    17. Wu, Xiong & Cao, Binrui & Liu, Bingwen & Zhang, Ziyu & Wang, Xiuli, 2023. "Capacity planning of carbon-free microgrid with hydrogen storage considering robust short-term off-grid operation," Renewable Energy, Elsevier, vol. 202(C), pages 242-254.
    18. Quarton, Christopher J. & Samsatli, Sheila, 2018. "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 302-316.
    19. Zhou, Suyang & Sun, Kaiyu & Wu, Zhi & Gu, Wei & Wu, Gaoxiang & Li, Zhe & Li, Junjie, 2020. "Optimized operation method of small and medium-sized integrated energy system for P2G equipment under strong uncertainty," Energy, Elsevier, vol. 199(C).
    20. Fan, Wei & Tan, Qingbo & Zhang, Amin & Ju, Liwei & Wang, Yuwei & Yin, Zhe & Li, Xudong, 2023. "A Bi-level optimization model of integrated energy system considering wind power uncertainty," Renewable Energy, Elsevier, vol. 202(C), pages 973-991.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Davis, M. & Okunlola, A. & Di Lullo, G. & Giwa, T. & Kumar, A., 2023. "Greenhouse gas reduction potential and cost-effectiveness of economy-wide hydrogen-natural gas blending for energy end uses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Le, Tay Son & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Ngo, Tuan Duc, 2023. "Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage," Applied Energy, Elsevier, vol. 336(C).
    4. Quarton, Christopher J. & Samsatli, Sheila, 2020. "Should we inject hydrogen into gas grids? Practicalities and whole-system value chain optimisation," Applied Energy, Elsevier, vol. 275(C).
    5. Wen, Lei & Jiang, Wenkai, 2024. "Bi-level capacity optimization of electricity-hydrogen coupled energy system considering power curtailment constraint and technological advancement," Energy, Elsevier, vol. 307(C).
    6. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    9. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    10. Shi, Mengshu & Wang, Weiye & Han, Yaxuan & Huang, Yuansheng, 2022. "Research on comprehensive benefit of hydrogen storage in microgrid system," Renewable Energy, Elsevier, vol. 194(C), pages 621-635.
    11. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    12. Richard P. van Leeuwen & Annelies E. Boerman & Edmund W. Schaefer & Gerwin Hoogsteen & Yashar S. Hajimolana, 2022. "Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs," Energies, MDPI, vol. 15(6), pages 1-22, March.
    13. Zhiming Lu & Youting Li & Guying Zhuo & Chuanbo Xu, 2023. "Configuration Optimization of Hydrogen-Based Multi-Microgrid Systems under Electricity Market Trading and Different Hydrogen Production Strategies," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    14. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    15. Wang, Shouxiang & Wang, Shaomin & Zhao, Qianyu & Dong, Shuai & Li, Hao, 2023. "Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand," Energy, Elsevier, vol. 269(C).
    16. Shamal Chandra Karmaker & Andrew Chapman & Kanchan Kumar Sen & Shahadat Hosan & Bidyut Baran Saha, 2022. "Renewable Energy Pathways toward Accelerating Hydrogen Fuel Production: Evidence from Global Hydrogen Modeling," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    17. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    18. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).
    19. Pivetta, Davide & Tafone, Alessio & Mazzoni, Stefano & Romagnoli, Alessandro & Taccani, Rodolfo, 2024. "A multi-objective planning tool for the optimal supply of green hydrogen for an industrial port area decarbonization," Renewable Energy, Elsevier, vol. 232(C).
    20. Cuisinier, E. & Lemaire, P. & Ruby, A. & Bourasseau, C. & Penz, B., 2023. "Impact of operational modelling choices on techno-economic modelling of local energy systems," Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224018036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.