IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v303y2024ics0360544224017444.html
   My bibliography  Save this article

Physics-guided fuel-switching neural networks for stable combustion of low calorific industrial gas

Author

Listed:
  • Zhang, Long
  • Zhou, Hua
  • Ren, Zhuyin

Abstract

Dual fuel combustion of low calorific industrial gas has been widely used in various types of burners for industrial production needs. Fuel switching rule is purely empirical lacking theoretic basis, potentially leading to flame extinction or excessive waste of ignition fuel. This study focuses on exploring physics-guided fuel-switching strategy for stable combustion of coke oven gas (COG) and blast furnace gas (BFG) in representative swirl burner. Stable operating regimes for COG and BFG are firstly identified with chemical eigen-analysis. The intrinsic propensity of flame extinction during fuel switching is revealed by positive chemical eigenvalues, and the key species and elementary reactions are identified. A clustered neural network with flag controller (CNNF) is then constructed to achieve stable combustion during fuel switching from COG to BFG as early as possible to reduce the use of COG. Results show that COG must be used to ignite and increase the ambient temperature to at least 673 K to avoid flame extinction. The chemical eigen-guided CNNF controller can adjust the switch speed to advance the fuel switching time by 14 % and can be further expanded to other fuel switching applications.

Suggested Citation

  • Zhang, Long & Zhou, Hua & Ren, Zhuyin, 2024. "Physics-guided fuel-switching neural networks for stable combustion of low calorific industrial gas," Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017444
    DOI: 10.1016/j.energy.2024.131971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224017444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luján, José Manuel & Guardiola, Carlos & Pla, Benjamín & Reig, Alberto, 2015. "Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions," Energy, Elsevier, vol. 90(P2), pages 1790-1798.
    2. Pochwatka, Patrycja & Rozakis, Stelios & Kowalczyk-Juśko, Alina & Czekała, Wojciech & Qiao, Wei & Nägele, Hans-Joachim & Janczak, Damian & Mazurkiewicz, Jakub & Mazur, Andrzej & Dach, Jacek, 2023. "The energetic and economic analysis of demand-driven biogas plant investment possibility in dairy farm," Energy, Elsevier, vol. 283(C).
    3. Qiu, Fei & Sun, Zhen & Li, Huiping & Qian, Qian, 2023. "Process simulation and multi-aspect analysis of methanol production through blast furnace gas and landfill gas," Energy, Elsevier, vol. 285(C).
    4. Shamsi, Mohammad & Rooeentan, Saeed & karami, Behtash & Elyasi Gomari, Kamal & Naseri, Masoud & Bonyadi, Mohammad, 2023. "Design and thermodynamic analysis of a novel structure utilizing coke oven gas for LNG and power cogeneration," Energy, Elsevier, vol. 277(C).
    5. Quintero-Coronel, Daniel A. & Salazar, Adalberto & Pupo-Roncallo, Oscar R. & Bula, Antonio & Corredor, Lesme & Amador, German & Gonzalez-Quiroga, Arturo, 2023. "Assessment of the interchangeability of coal-biomass syngas with natural gas for atmospheric burners and high-pressure combustion applications," Energy, Elsevier, vol. 276(C).
    6. Baraiya, Nikhil A. & Ramanan, Vikram & Nagarajan, Baladandayuthapani & Vegad, Chetankumar S. & Chakravarthy, S.R., 2023. "Dynamic mode decomposition of syngas (H2/CO) flame during transition to high-frequency instability in turbulent combustor," Energy, Elsevier, vol. 263(PD).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismael Payo & Luis Sánchez & Enrique Caño & Octavio Armas, 2017. "Control Applied to a Reciprocating Internal Combustion Engine Test Bench under Transient Operation: Impact on Engine Performance and Pollutant Emissions," Energies, MDPI, vol. 10(11), pages 1-17, October.
    2. Wenyu Gu & Wanhua Su, 2023. "Study on the Effects of Exhaust Gas Recirculation and Fuel Injection Strategy on Transient Process Performance of Diesel Engines," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    3. Liang, Huixun & Chen, Heng & Gao, Yue & Yang, Yongping & Yang, Zhiping, 2024. "Flexibility improvement of a coal-fired power plant by the integration of biogas utilization and molten salt thermal storage," Energy, Elsevier, vol. 304(C).
    4. Ko, Jinyoung & Jin, Dongyoung & Jang, Wonwook & Myung, Cha-Lee & Kwon, Sangil & Park, Simsoo, 2017. "Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures," Applied Energy, Elsevier, vol. 187(C), pages 652-662.
    5. Giorgio Zamboni & Simone Moggia & Massimo Capobianco, 2017. "Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine," Energies, MDPI, vol. 10(1), pages 1-18, January.
    6. Wenyu Gu & Wanhua Su, 2023. "Study on the Effect of Exhaust Gas Recirculation Coupled Variable Geometry Turbocharger and Fuel Quantity Control on Transient Performance of Turbocharged Diesel Engine," Energies, MDPI, vol. 16(16), pages 1-20, August.
    7. Myung, Cha-Lee & Jang, Wonwook & Kwon, Sangil & Ko, Jinyoung & Jin, Dongyoung & Park, Simsoo, 2017. "Evaluation of the real-time de-NOx performance characteristics of a LNT-equipped Euro-6 diesel passenger car with various vehicle emissions certification cycles," Energy, Elsevier, vol. 132(C), pages 356-369.
    8. Shamsi, M. & Obaid, A.A. & Vaziri, M. & Mousavian, S. & Hekmatian, A. & Bonyadi, M., 2024. "A comprehensive comparison of the turbo-expander, Joule-Thomson, and combination of mechanical refrigeration and Joule-Thomson processes for natural gas liquids production," Energy, Elsevier, vol. 295(C).
    9. Francisco J. Martos & José A. Soriano & Andrei Braic & Pablo Fernández-Yáñez & Octavio Armas, 2023. "A CFD Modelling Approach for the Operation Analysis of an Exhaust Backpressure Valve Used in a Euro 6 Diesel Engine," Energies, MDPI, vol. 16(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.