A multivariable hybrid prediction system of wind power based on outlier test and innovative multi-objective optimization
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.122333
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
- Dong, Lei & Wang, Lijie & Khahro, Shahnawaz Farhan & Gao, Shuang & Liao, Xiaozhong, 2016. "Wind power day-ahead prediction with cluster analysis of NWP," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1206-1212.
- Wu, Zhuochun & Xia, Xiangjie & Xiao, Liye & Liu, Yilin, 2020. "Combined model with secondary decomposition-model selection and sample selection for multi-step wind power forecasting," Applied Energy, Elsevier, vol. 261(C).
- Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.
- Jiyang Wang & Yuyang Gao & Xuejun Chen, 2018. "A Novel Hybrid Interval Prediction Approach Based on Modified Lower Upper Bound Estimation in Combination with Multi-Objective Salp Swarm Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 11(6), pages 1-30, June.
- Yu Jin & Honggang Guo & Jianzhou Wang & Aiyi Song, 2020. "A Hybrid System Based on LSTM for Short-Term Power Load Forecasting," Energies, MDPI, vol. 13(23), pages 1-32, November.
- Wang, Ying & Wang, Jianzhou & Li, Zhiwu & Yang, Hufang & Li, Hongmin, 2021. "Design of a combined system based on two-stage data preprocessing and multi-objective optimization for wind speed prediction," Energy, Elsevier, vol. 231(C).
- Qian, Wuyong & Wang, Jue, 2020. "An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China," Energy, Elsevier, vol. 209(C).
- Zhang, Wenyu & Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong, 2020. "Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting," Applied Energy, Elsevier, vol. 277(C).
- Wang, Jianzhou & Heng, Jiani & Xiao, Liye & Wang, Chen, 2017. "Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting," Energy, Elsevier, vol. 125(C), pages 591-613.
- Ambach, Daniel & Schmid, Wolfgang, 2017. "A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting," Energy, Elsevier, vol. 135(C), pages 833-850.
- Zhang, Xiaobo & Wang, Jianzhou & Gao, Yuyang, 2019. "A hybrid short-term electricity price forecasting framework: Cuckoo search-based feature selection with singular spectrum analysis and SVM," Energy Economics, Elsevier, vol. 81(C), pages 899-913.
- Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2018. "Multi-step ahead forecasting in electrical power system using a hybrid forecasting system," Renewable Energy, Elsevier, vol. 122(C), pages 533-550.
- Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
- Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
- Wang, Shuai & Li, Bin & Li, Guanzheng & Yao, Bin & Wu, Jianzhong, 2021. "Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration," Applied Energy, Elsevier, vol. 292(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Haipeng & Wang, Jianzhou & Qian, Yuansheng & Li, Qiwei, 2024. "Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM," Energy, Elsevier, vol. 294(C).
- Zulfiqar Ali & Sadia Qamar & Nasrulla Khan & Muhammad Faisal & Saad Sh. Sammen, 2023. "A New Regional Drought Index under X-bar Chart Based Weighting Scheme – The Quality Boosted Regional Drought Index (QBRDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 1895-1911, March.
- Niu, Tong & Li, Jinkai & Wei, Wei & Yue, Hui, 2022. "A hybrid deep learning framework integrating feature selection and transfer learning for multi-step global horizontal irradiation forecasting," Applied Energy, Elsevier, vol. 326(C).
- Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
- Wang, Chao & Lin, Hong & Hu, Heng & Yang, Ming & Ma, Li, 2024. "A hybrid model with combined feature selection based on optimized VMD and improved multi-objective coati optimization algorithm for short-term wind power prediction," Energy, Elsevier, vol. 293(C).
- Dai, Min & Yang, Han & Yang, Fusheng & Zhang, Zaoxiao & Yu, Yunsong & Liu, Guilian & Feng, Xiao, 2022. "Multi-strategy Ensemble Non-dominated sorting genetic Algorithm-II (MENSGA-II) and application in energy-enviro-economic multi-objective optimization of separation for isopropyl alcohol/diisopropyl et," Energy, Elsevier, vol. 254(PA).
- Wang, Hao & Ye, Jingzhen & Huang, Linxuan & Wang, Qiang & Zhang, Haohua, 2023. "A multivariable hybrid prediction model of offshore wind power based on multi-stage optimization and reconstruction prediction," Energy, Elsevier, vol. 262(PA).
- Zhao, Jing & Guo, Yiyi & Lin, Yihua & Zhao, Zhiyuan & Guo, Zhenhai, 2024. "A novel dynamic ensemble of numerical weather prediction for multi-step wind speed forecasting with deep reinforcement learning and error sequence modeling," Energy, Elsevier, vol. 302(C).
- Zhu, Qiannan & Jiang, Feng & Li, Chaoshun, 2023. "Time-varying interval prediction and decision-making for short-term wind power using convolutional gated recurrent unit and multi-objective elephant clan optimization," Energy, Elsevier, vol. 271(C).
- Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Ying & Wang, Jianzhou & Li, Zhiwu & Yang, Hufang & Li, Hongmin, 2021. "Design of a combined system based on two-stage data preprocessing and multi-objective optimization for wind speed prediction," Energy, Elsevier, vol. 231(C).
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong & Liu, Zhenkun, 2021. "Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection," Applied Energy, Elsevier, vol. 301(C).
- Wang, Jianzhou & An, Yining & Li, Zhiwu & Lu, Haiyan, 2022. "A novel combined forecasting model based on neural networks, deep learning approaches, and multi-objective optimization for short-term wind speed forecasting," Energy, Elsevier, vol. 251(C).
- Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
- Li, Jingrui & Wang, Jiyang & Li, Zhiwu, 2023. "A novel combined forecasting system based on advanced optimization algorithm - A study on optimal interval prediction of wind speed," Energy, Elsevier, vol. 264(C).
- Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
- Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
- Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
- Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
- Lifang Zhang & Jianzhou Wang & Zhenkun Liu, 2023. "Power grid operation optimization and forecasting using a combined forecasting system," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 124-153, January.
- Wang, Chen & Zhang, Shenghui & Liao, Peng & Fu, Tonglin, 2022. "Wind speed forecasting based on hybrid model with model selection and wind energy conversion," Renewable Energy, Elsevier, vol. 196(C), pages 763-781.
- Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
- Zhao, Jing & Guo, Zhenhai & Guo, Yanling & Lin, Wantao & Zhu, Wenjin, 2021. "A self-organizing forecast of day-ahead wind speed: Selective ensemble strategy based on numerical weather predictions," Energy, Elsevier, vol. 218(C).
- Wang, Jianzhou & Gao, Jialu & Wei, Danxiang, 2022. "Electric load prediction based on a novel combined interval forecasting system," Applied Energy, Elsevier, vol. 322(C).
- Yang, Zhongshan & Wang, Jian, 2018. "A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Applied Energy, Elsevier, vol. 230(C), pages 1108-1125.
- Zhang, Wenyu & Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong, 2020. "Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting," Applied Energy, Elsevier, vol. 277(C).
- Fu, Wenlong & Fu, Yuchen & Li, Bailing & Zhang, Hairong & Zhang, Xuanrui & Liu, Jiarui, 2023. "A compound framework incorporating improved outlier detection and correction, VMD, weight-based stacked generalization with enhanced DESMA for multi-step short-term wind speed forecasting," Applied Energy, Elsevier, vol. 348(C).
- Hu, Yahui & Guo, Yingshi & Fu, Rui, 2023. "A novel wind speed forecasting combined model using variational mode decomposition, sparse auto-encoder and optimized fuzzy cognitive mapping network," Energy, Elsevier, vol. 278(PA).
- Lin, Shengmao & Wang, Shu & Xu, Xuefang & Li, Ruixiong & Shi, Peiming, 2024. "GAOformer: An adaptive spatiotemporal feature fusion transformer utilizing GAT and optimizable graph matrixes for offshore wind speed prediction," Energy, Elsevier, vol. 292(C).
More about this item
Keywords
Wind power prediction; Outlier test; Multivariable machine learning; Multi-objective; Optimization algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221025810. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.