IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015135.html
   My bibliography  Save this article

Volume-of-fluid-based method for three-dimensional shape prediction during the construction of horizontal salt caverns energy storage

Author

Listed:
  • Liu, Jia
  • Zhu, Song
  • Wanyan, Qiqi
  • Li, Kang
  • Xu, Wenjie
  • Zhuang, Duanyang
  • Zhan, Liangtong
  • Chen, Yunmin
  • Li, Jinlong

Abstract

Construction prediction is the key for the shape control of energy storage salt caverns, which benefits with the storage capacity and long-term operational safety. However, the conventional grid discretization methods using elastic grid could not accurately tracking the three-dimensional boundary movements of salt cavern. This paper introduced a novel construction prediction model of salt cavern using a Volume-of-fluid based method. The tracking of the salt caverns’ dissolving boundary is successfully reconstructed and tracked by the fluid volume fractions (0-1) in structural grids. The model was validated by indoor experiment and field data. In the simulation of indoor experiment, the lateral expansion, which was difficult to reproduce in previous models, is successfully simulated. The volume of the simulation chamber is 392.8 ml with an error of 1.9 %. During the simulation of Volgograd horizontal cavern construction, the simulated cavern shape is close to the sonar detection, with an average error in radius about 3.6 %. And the brine-discharge concentration is consistent with the site monitoring, with an average error about 4.5 %. These results validate the capability of the proposed method in three-dimensional dynamic boundary tracking and shape prediction of salt cavern.

Suggested Citation

  • Liu, Jia & Zhu, Song & Wanyan, Qiqi & Li, Kang & Xu, Wenjie & Zhuang, Duanyang & Zhan, Liangtong & Chen, Yunmin & Li, Jinlong, 2024. "Volume-of-fluid-based method for three-dimensional shape prediction during the construction of horizontal salt caverns energy storage," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015135
    DOI: 10.1016/j.energy.2024.131740
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.