IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031869.html
   My bibliography  Save this article

Multi-well combined solution mining for salt cavern energy storages and its displacement optimization

Author

Listed:
  • Liao, Youqiang
  • Wang, Tongtao
  • Ren, Zhongxin
  • Wang, Duocai
  • Sun, Wei
  • Sun, Peng
  • Li, Jingcui
  • Zou, Xianjian

Abstract

Improving the water solution mining rate of the salt rock layer while reducing energy consumption is the core idea for promoting the construction of salt cavern energy storage. In this work, a novel multi-well combined solution mining method for salt cavern energy storages was presented, and a displacement optimization model incorporating sub-models for outlet brine concentration, solution mining rate, and energy consumption of water injection was proposed to maximize the solution mining efficiency. The accuracy of the proposed model is verified by comparing the simulated results with the field data. The results show that under basically the same solution mining rate, the energy consumption of brine injection can decrease by 18.82 %. If 0.49 % of the solution mining rate of the salt cavern can be sacrificed, energy consumption can be reduced by 7.40 %. A special focus was given to the well selection schemes, which indicated that optimization of well selection schemes could reduce energy consumption by 3.61 %. This work could add further insights into the inter-coupling relationship between outlet brine concentration, solution mining rate, and energy consumption of water injection, and help to reduce the energy consumption of water injection and improve solution mining rate.

Suggested Citation

  • Liao, Youqiang & Wang, Tongtao & Ren, Zhongxin & Wang, Duocai & Sun, Wei & Sun, Peng & Li, Jingcui & Zou, Xianjian, 2024. "Multi-well combined solution mining for salt cavern energy storages and its displacement optimization," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031869
    DOI: 10.1016/j.energy.2023.129792
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Tongtao & Ao, Lide & Wang, Bin & Ding, Shuanglong & Wang, Kangyue & Yao, Fulai & Daemen, J.J.K., 2022. "Tightness of an underground energy storage salt cavern with adverse geological conditions," Energy, Elsevier, vol. 238(PC).
    2. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    3. Yang, Chunhe & Wang, Tongtao & Li, Yinping & Yang, Haijun & Li, Jianjun & Qu, Dan’an & Xu, Baocai & Yang, Yun & Daemen, J.J.K., 2015. "Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China," Applied Energy, Elsevier, vol. 137(C), pages 467-481.
    4. Li, Jinlong & Tang, Yao & Shi, Xilin & Xu, Wenjie & Yang, Chunhe, 2019. "Modeling the construction of energy storage salt caverns in bedded salt," Applied Energy, Elsevier, vol. 255(C).
    5. Tarkowski, Radoslaw, 2019. "Underground hydrogen storage: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 86-94.
    6. Li, Wenjing & Nan, Xing & Chen, Jiasong & Yang, Chunhe, 2021. "Investigation of thermal-mechanical effects on salt cavern during cycling loading," Energy, Elsevier, vol. 232(C).
    7. Jinlong, Li & Wenjie, Xu & Jianjing, Zheng & Wei, Liu & Xilin, Shi & Chunhe, Yang, 2020. "Modeling the mining of energy storage salt caverns using a structural dynamic mesh," Energy, Elsevier, vol. 193(C).
    8. Destek, Mehmet Akif & Manga, Müge & Cengiz, Orhan & Destek, Gamze, 2022. "Investigating the potential of renewable energy in establishing global peace: Fresh evidence from top energy consumer countries," Renewable Energy, Elsevier, vol. 197(C), pages 170-177.
    9. Ling, Daosheng & Zhu, Song & Zheng, Jianjing & Xu, Zijun & Zhao, Yunsong & Chen, Liuping & Shi, Xilin & Li, Jinlong, 2023. "A simulation method for the dissolution construction of salt cavern energy storage with the interface angle considered," Energy, Elsevier, vol. 263(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xiaopeng & Ma, Hongling & Cai, Rui & Zhao, Kai & Zeng, Zhen & Li, Hang & Yang, Chunhe, 2023. "Feasibility analysis of natural gas storage in the voids of sediment within salt cavern——A case study in China," Energy, Elsevier, vol. 285(C).
    2. Li, Hang & Ma, Hongling & Liu, Jiang & Zhu, Shijie & Zhao, Kai & Zheng, Zhuyan & Zeng, Zhen & Yang, Chunhe, 2023. "Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China," Energy, Elsevier, vol. 281(C).
    3. Li, Jinlong & Zhang, Ning & Xu, Wenjie & Naumov, Dmitri & Fischer, Thomas & Chen, Yunmin & Zhuang, Duanyang & Nagel, Thomas, 2022. "The influence of cavern length on deformation and barrier integrity around horizontal energy storage salt caverns," Energy, Elsevier, vol. 244(PB).
    4. Huiyong Song & Song Zhu & Jinlong Li & Zhuoteng Wang & Qingdong Li & Zexu Ning, 2023. "Design Criteria for the Construction of Energy Storage Salt Cavern Considering Economic Benefits and Resource Utilization," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    5. He, Tao & Wang, Tongtao & Wang, Duocai & Xie, Dongzhou & Dong, Zhikai & Zhang, Hong & Ma, Tieliang & Daemen, J.J.K., 2023. "Integrity analysis of wellbores in the bedded salt cavern for energy storage," Energy, Elsevier, vol. 263(PB).
    6. Lyu, Cheng & Dai, Hangyu & Ma, Chao & Zhou, Ping & Zhao, Chengxing & Xu, Deng & Zhang, Liangquan & Liang, Chao, 2024. "Prediction model for three-dimensional surface subsidence of salt cavern storage with different shapes," Energy, Elsevier, vol. 297(C).
    7. Wei, Xinxing & Shi, Xilin & Li, Yinping & Li, Peng & Ban, Shengnan & Zhao, Kai & Ma, Hongling & Liu, Hejuan & Yang, Chunhe, 2023. "A comprehensive feasibility evaluation of salt cavern oil energy storage system in China," Applied Energy, Elsevier, vol. 351(C).
    8. Xue, Tianfu & Shi, Xilin & Wang, Guibin & Liu, Xin & Wei, Xinxing & Ding, Shuanglong & Fu, Xinghui, 2024. "Study on repairing technical parameters of irregular gas storage salt caverns," Energy, Elsevier, vol. 293(C).
    9. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    10. Li, Jinlong & Shi, Xilin & Zhang, Shuai, 2020. "Construction modeling and parameter optimization of multi-step horizontal energy storage salt caverns," Energy, Elsevier, vol. 203(C).
    11. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    12. Lankof, Leszek & Urbańczyk, Kazimierz & Tarkowski, Radosław, 2022. "Assessment of the potential for underground hydrogen storage in salt domes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Jingcui Li & Jifang Wan & Hangming Liu & Maria Jose Jurado & Yuxian He & Guangjie Yuan & Yan Xia, 2022. "Stability Analysis of a Typical Salt Cavern Gas Storage in the Jintan Area of China," Energies, MDPI, vol. 15(11), pages 1-15, June.
    14. Zhang, Xiong & Liu, Wei & Chen, Jie & Jiang, Deyi & Fan, Jinyang & Daemen, J.J.K. & Qiao, Weibiao, 2022. "Large-scale CO2 disposal/storage in bedded rock salt caverns of China: An evaluation of safety and suitability," Energy, Elsevier, vol. 249(C).
    15. Nan Zhang & Wei Liu & Yun Zhang & Pengfei Shan & Xilin Shi, 2020. "Microscopic Pore Structure of Surrounding Rock for Underground Strategic Petroleum Reserve (SPR) Caverns in Bedded Rock Salt," Energies, MDPI, vol. 13(7), pages 1-22, March.
    16. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    17. Yi Zhang & Wenjing Li & Guodong Chen, 2022. "A Thermodynamic Model for Carbon Dioxide Storage in Underground Salt Caverns," Energies, MDPI, vol. 15(12), pages 1-20, June.
    18. Li, Wenjing & Miao, Xiuxiu & Wang, Jianfu & Li, Xiaozhao, 2023. "Study on thermodynamic behaviour of natural gas and thermo-mechanical response of salt caverns for underground gas storage," Energy, Elsevier, vol. 262(PB).
    19. Li, Peng & Li, Yinping & Shi, Xilin & Zhao, Kai & Liang, Xiaopeng & Ma, Hongling & Yang, Chunhe & Liu, Kai, 2022. "Compaction and restraining effects of insoluble sediments in underground energy storage salt caverns," Energy, Elsevier, vol. 249(C).
    20. Jinlong, Li & Wenjie, Xu & Jianjing, Zheng & Wei, Liu & Xilin, Shi & Chunhe, Yang, 2020. "Modeling the mining of energy storage salt caverns using a structural dynamic mesh," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.