IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224014737.html
   My bibliography  Save this article

A deep learning framework for the joint prediction of the SOH and RUL of lithium-ion batteries based on bimodal images

Author

Listed:
  • Cai, Nian
  • Que, Xiaoping
  • Zhang, Xu
  • Feng, Weiguo
  • Zhou, Yinghong

Abstract

Accurately predicting the state of health (SOH) and remaining useful life (RUL) is significant for battery-powered electric devices. Since the images generated from raw cyclic data of the batteries can reveal more inherent battery degradation characteristics than raw cyclic data studied in most of previous studies, the bimodal images generated by two methods, such as images of curves and Gramian angular field (GAF), are effectively integrated into a unified deep learning framework to predict the health states of lithium-ion batteries. To this end, a bimodal fusion regression network (BFRN) is elaborately designed to jointly predict SOH and RUL of the battery, in which the features of bimodal images for the battery are fully extracted, interactively fused and aggregated by specific-designed network modules. Experiments on the public MIT/Stanford dataset indicate that the proposed method can achieve accurate joint state prediction for lithium-ion batteries, with the coefficient of determination (R2) for the SOH and RUL tasks are 0.98 and 0.93, respectively, which is superior to existing deep learning methods. Experiments on another public battery dataset demonstrate that it can be practical and generalized for the batteries with other chemistries.

Suggested Citation

  • Cai, Nian & Que, Xiaoping & Zhang, Xu & Feng, Weiguo & Zhou, Yinghong, 2024. "A deep learning framework for the joint prediction of the SOH and RUL of lithium-ion batteries based on bimodal images," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014737
    DOI: 10.1016/j.energy.2024.131700
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.