IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224014312.html
   My bibliography  Save this article

Study of CO2 hydrate formation on the surface of residue shell from dissociated CH4 hydrate

Author

Listed:
  • Gui, Xia
  • Li, Li

Abstract

The use of hydrates to store CO2 is considered an effective method that can be implemented. However, the problems of interfacial hydrate film formation and low mass transfer efficiency when forming CO2 hydrate under static conditions still need to be solved. This study compared the growth modes of CH4 hydrate and CO2 hydrate under static conditions and believed that the wall-climbing growth mode of CH4 hydrate can be used to generate CO2 hydrate. It is proposed to use the residual shell of CH4 hydrate as a water-absorbing medium to change the mode in which CO2 hydrate is preferentially generated in the main body of the liquid phase. In this method, CO2 hydrate shows a faster formation rate and almost no induction time, which is attributed to the larger gas-liquid contact area provided by the shell, the residual ring in decomposed water on the surface, and the crystal structure inside the shell. When sodium dodecanoate (SD) is used as a promotor for CH4 hydrate to regenerate CO2 hydrate, the observation of the hydrate growth morphology shows that CO2 hydrate can grow on the CH4 hydrate shell. It does not have the wall climbing height of CH4 hydrate but grows toward the center of the reactor. When SDS is combined with SD to regenerate CO2 hydrate as an accelerator in the CH4 hydrate generation process, filamentous growth of CO2 hydrate can be observed.

Suggested Citation

  • Gui, Xia & Li, Li, 2024. "Study of CO2 hydrate formation on the surface of residue shell from dissociated CH4 hydrate," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014312
    DOI: 10.1016/j.energy.2024.131658
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Lei & Guan, Dawei & Qu, Aoxing & Li, Qingping & Ge, Yang & Liang, Huiyong & Dong, Hongsheng & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen, 2023. "Thermotactic habit of gas hydrate growth enables a fast transformation of melting ice," Applied Energy, Elsevier, vol. 331(C).
    2. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    3. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    4. Peng Xiao & Juan-Juan Li & Wan Chen & Wei-Xin Pang & Xiao-Wan Peng & Yan Xie & Xiao-Hui Wang & Chun Deng & Chang-Yu Sun & Bei Liu & Yu-Jie Zhu & Yun-Lei Peng & Praveen Linga & Guang-Jin Chen, 2023. "Enhanced formation of methane hydrate from active ice with high gas uptake," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Zhao, Qi & Chen, Zhao-Yang & Li, Xiao-Sen & Xia, Zhi-Ming, 2023. "Experimental study of CO2 hydrate formation under an electrostatic field," Energy, Elsevier, vol. 272(C).
    6. Liu, Quanyou & Zhu, Dongya & Jin, Zhijun & Tian, Hailong & Zhou, Bing & Jiang, Peixue & Meng, Qingqiang & Wu, Xiaoqi & Xu, Huiyuan & Hu, Ting & Zhu, Huixing, 2023. "Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fang & Mu, Jinchi & Lin, Wenjing & Cao, Yuehan & Wang, Yuhan & Leng, Shuai & Guo, Lihong & Zhou, Ying, 2024. "Post-combustion CO2 capture via the hydrate formation at the gas-liquid-solid interface induced by the non-surfactant graphene oxide," Energy, Elsevier, vol. 290(C).
    2. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
    3. Wang, Pengfei & Chen, Yiqi & Teng, Ying & An, Senyou & Li, Yun & Han, Meng & Yuan, Bao & Shen, Suling & Chen, Bin & Han, Songbai & Zhu, Jinlong & Zhu, Jianbo & Zhao, Yusheng & Xie, Heping, 2024. "A comprehensive review of hydrogen purification using a hydrate-based method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    4. Zhang, Fengyuan & Wang, Xiaolin & Lou, Xia & Lipiński, Wojciech, 2021. "The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications," Energy, Elsevier, vol. 227(C).
    5. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    6. Liu, Zheng & Zheng, Junjie & Wang, Zhiyuan & Gao, Yonghai & Sun, Baojiang & Liao, Youqiang & Linga, Praveen, 2023. "Effect of clay on methane hydrate formation and dissociation in sediment: Implications for energy recovery from clayey-sandy hydrate reservoirs," Applied Energy, Elsevier, vol. 341(C).
    7. Ren, Junjie & Zeng, Siyu & Chen, Daoyi & Yang, Mingjun & Linga, Praveen & Yin, Zhenyuan, 2023. "Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration1," Applied Energy, Elsevier, vol. 340(C).
    8. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    9. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    10. Yidi Wan & Chengzao Jia & Wen Zhao & Lin Jiang & Zhuxin Chen, 2023. "Micro-Scale Lattice Boltzmann Simulation of Two-Phase CO 2 –Brine Flow in a Tighter REV Extracted from a Permeable Sandstone Core: Implications for CO 2 Storage Efficiency," Energies, MDPI, vol. 16(3), pages 1-26, February.
    11. Li, Xiangxuan & Cui, Wei & Ma, Ting & Ma, Zhao & Liu, Jun & Wang, Qiuwang, 2023. "Lattice Boltzmann simulation of coupled depressurization and thermal decomposition of carbon dioxide hydrate for cold thermal energy storage," Energy, Elsevier, vol. 278(PB).
    12. Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    13. Wang, Haijun & Liu, Weiguo & Wu, Peng & Pan, Xuelian & You, Zeshao & Lu, Jingsheng & Li, Yanghui, 2023. "Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect," Energy, Elsevier, vol. 275(C).
    14. Adeel ur Rehman & Bhajan Lal, 2022. "RETRACTED: Gas Hydrate-Based CO 2 Capture: A Journey from Batch to Continuous," Energies, MDPI, vol. 15(21), pages 1-27, November.
    15. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    16. Liu, Yanzhen & Li, Qingping & Lv, Xin & Yang, Lei & Wang, Junfeng & Qiao, Fen & Zhao, Jiafei & Qi, Huiping, 2023. "The passive effect of clay particles on natural gas hydrate kinetic inhibitors," Energy, Elsevier, vol. 267(C).
    17. Bukar, Ahmed M. & Asif, Muhammad, 2024. "Technology readiness level assessment of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    18. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    19. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    20. Kim, Kwangbum & Truong-Lam, Hai Son & Lee, Ju Dong & Sa, Jeong-Hoon, 2023. "Facilitating clathrate hydrates with extremely rapid and high gas uptake for chemical-free carbon capture and methane storage," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.