IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924018749.html
   My bibliography  Save this article

Techno-economic modeling of carbon dioxide hydrate formation for carbon sequestration

Author

Listed:
  • Bhati, Awan
  • Hamalian, Mark
  • Bahadur, Vaibhav

Abstract

Significant carbon sequestration capacity (up to 10 Gigatons/yr) will be needed by 2050 to limit the Earth's temperature rise to <1.5 °C. Current worldwide sequestration capacity is only ∼40MT/yr, which highlights the need for the development of new and scalable sequestration approaches. One promising approach for long-term sequestration of carbon dioxide (CO2) is the deposition of CO2 hydrates (ice-like solids of water and CO2) on the seabed with artificial sealing (or under marine sediments). Technologically, this involves formation of CO2 hydrate foam, transport of the foam to the sequestration site, compaction into hydrate plugs, sealing and then disposal. Critical to the techno-economic success of this concept is the ability to rapidly form hydrates. The present group has achieved very high rates of formation of hydrate foam by bubbling CO2 gas at high flow rates in a bubble column reactor (BCR). This study utilizes recent experimental results on ultra-fast hydrate formation to conduct a detailed techno-economic analysis of the hydrate foam-making process. All analysis is conducted for a 1 Megaton/yr sequestration project with project life of 30 years. Our analysis shows that the energy requirements (assumed as electrical in this study) for hydrate formation equal 260 kWhr/ton and the total cost of hydrate foam production is $36/ton. The biggest cost component is energy, which accounts for 51 % of total cost. A 1 Megaton/yr project will require an initial capital investment of $150 M. Such a project will consume 0.66 million cubic meters of seawater/yr. Contributions of various key processes to the total cost are quantified. Process-wise, the biggest contributors to total cost are refrigeration and gas compression, which account for 41 % and 27 % of the total cost, respectively. Cost of the BCR is only 0.1 % of the total investment cost. Also, gas recirculation in the BCR contributes minimally (0.14 %) to the overall energy requirement. Finally, this study identifies pathways to reduce $/ton costs to increase the viability of this carbon sequestration approach. It is noted that hydrate transportation, compaction and sealing are not included in this analysis which focuses on the techno-economics of rapid hydrate formation only.

Suggested Citation

  • Bhati, Awan & Hamalian, Mark & Bahadur, Vaibhav, 2025. "Techno-economic modeling of carbon dioxide hydrate formation for carbon sequestration," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018749
    DOI: 10.1016/j.apenergy.2024.124491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924018749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.