IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224014555.html
   My bibliography  Save this article

Enhanced bio-hydrogen production by photo-fermentation of corn stalk using Fe-doped CaTiO3 photocatalyst

Author

Listed:
  • Yang, Xudong
  • Zhang, Huan
  • Zhang, Zhiping
  • Li, Yameng
  • Liu, Hong
  • Zhang, Feng
  • Xiang, Guanning
  • Zhang, Quanguo

Abstract

The aim of this study was to analyze the effects of CaTiO3 photocatalysts doped with different concentrations of Fe on the biohydrogen production process by photo-fermentation using corn stover as the substrate. The experimental results showed that the maximum cumulative hydrogen production and the maximum rate of hydrogen production were obtained when the doping concentration was 6 % (g/g) (380.8 mL, 26.4 mL/h), which were 63.4 % and 203.4 % higher, respectively, than those of the blank control group (233 mL, 8.7 mL/h). The substrate conversion rate was 32.82 %. Iron-doped CaTiO3 lowered the oxygen reduction potential in the fermentation system to provide a suitable reduction environment for the growth and fermentation of photosynthetic bacteria. The lowest redox potential observed was −393.5 mV for 6 % iron-doped CaTiO3. Thermogram analysis revealed a strong correlation between cumulative hydrogen production and redox potential. Additionally, the analysis of soluble small molecules showed that iron-doped CaTiO3 could inhibit the production of ethanol from glycolysis during fermentation and promote the utilization of small molecule acids.

Suggested Citation

  • Yang, Xudong & Zhang, Huan & Zhang, Zhiping & Li, Yameng & Liu, Hong & Zhang, Feng & Xiang, Guanning & Zhang, Quanguo, 2024. "Enhanced bio-hydrogen production by photo-fermentation of corn stalk using Fe-doped CaTiO3 photocatalyst," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014555
    DOI: 10.1016/j.energy.2024.131682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhiping & Ai, Fuke & Zhang, Haorui & Zhang, Huan & Zhu, Shengnan & Zhang, Quanguo & Li, Yameng, 2023. "Synergetic effect evaluation of light and mass transfer enhancement strategies on photo fermentative biohydrogen production process: Illumination, shake, and high solid level," Energy, Elsevier, vol. 269(C).
    2. Moreira, F.S. & Rodrigues, M.S. & Sousa, L.M. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2022. "Single-stage repeated batch cycles using co-culture of Enterobacter cloacae and purple non-sulfur bacteria for hydrogen production," Energy, Elsevier, vol. 239(PE).
    3. Jeder, Khawla & Bouhamed, Ayda & Nouri, Hanen & Abdelmoula, Najmeddine & Jöhrmann, Nathanael & Wunderle, Bernhard & Khemakhem, Hamadi & Kanoun, Olfa, 2022. "Enhancement of the performance of flexible lead-free nanogenerators by doping in BaTiO3 nanoparticles," Energy, Elsevier, vol. 261(PB).
    4. Machado, R.G. & Moreira, F.S. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2018. "Repeated batch cycles as an alternative for hydrogen production by co-culture photofermentation," Energy, Elsevier, vol. 153(C), pages 861-869.
    5. Liu, Yang & Xie, Xiaoqing & Wang, Mei, 2023. "Energy structure and carbon emission: Analysis against the background of the current energy crisis in the EU," Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zagrodnik, Roman & Duber, Anna, 2024. "Continuous dark-photo fermentative H2 production from synthetic lignocellulose hydrolysate with different photoheterotrophic cultures: Sequential vs. co-culture processes," Energy, Elsevier, vol. 290(C).
    2. Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zhu, Zhaozhe & Bai, He & Li, Qicheng & Zheng, Lijun & Gao, Xinyong & You, Shijun, 2023. "Difference analysis and recognition of hydraulic oscillation by two types of sudden faults on long-distance district heating pipeline," Energy, Elsevier, vol. 284(C).
    3. Rajat Kumar Sharma & Mohammad Ali Nazari & Juma Haydary & Triveni Prasad Singh & Sandip Mandal, 2023. "A Review on Advanced Processes of Biohydrogen Generation from Lignocellulosic Biomass with Special Emphasis on Thermochemical Conversion," Energies, MDPI, vol. 16(17), pages 1-27, September.
    4. Lv Chen & Lingying Pan & Kaige Zhang, 2024. "The Dynamic Cointegration Relationship between International Crude Oil, Natural Gas, and Coal Price," Energies, MDPI, vol. 17(13), pages 1-14, June.
    5. Li, Guang & Chang, Yuxue & Liu, Tao & Yu, Zhongliang & Liu, Zheyu & Liu, Fan & Ma, Shuqi & Weng, Yujing & Zhang, Yulong, 2020. "Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process," Energy, Elsevier, vol. 206(C).
    6. Anita Šalić & Bruno Zelić, 2022. "A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance," Energies, MDPI, vol. 15(19), pages 1-22, September.
    7. Li, Jiangkuan & Lin, Meng & Wang, Bo & Tian, Ruifeng & Tan, Sichao & Li, Yankai & Chen, Junjie, 2024. "Open set recognition fault diagnosis framework based on convolutional prototype learning network for nuclear power plants," Energy, Elsevier, vol. 290(C).
    8. Moreira, F.S. & Rodrigues, M.S. & Sousa, L.M. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2022. "Single-stage repeated batch cycles using co-culture of Enterobacter cloacae and purple non-sulfur bacteria for hydrogen production," Energy, Elsevier, vol. 239(PE).
    9. Jia, Linrui & Lu, Lin & Gong, Quan & Jiao, Kai, 2024. "Analytical and experimental analyses on cooling performances of radiative SkyCool radiators with various interior flowing channels," Energy, Elsevier, vol. 295(C).
    10. Xinglin Yang & Qiang Lei & Junhu Zou & Xiaohui Lu & Zhenzhen Chen, 2023. "Green and Efficient Recovery and Optimization of Waste Heat and LNG Cold Energy in LNG-Powered Ship Engines," Energies, MDPI, vol. 16(24), pages 1-30, December.
    11. Aghajani Delavar, Mojtaba & Wang, Junye, 2023. "Illumination and fluid flow effects on bioplastic production and biohydrogen generation in microbioreactors with different geometries," Energy, Elsevier, vol. 282(C).
    12. Xu, Hao & Hungwe, Douglas & Yang, Pu & Yu, Mengzhu & Cheng, Shuo & Yoshikawa, Kunio & Takahashi, Fumitake, 2024. "Oil sludge addition enables prediction of biomass pyrolysis product profiles by synergistic behaviors between biomass components and oil sludge," Applied Energy, Elsevier, vol. 362(C).
    13. Liu, Yuxiang & Liang, Tao & Yuan, Xin & Lv, Yongkang, 2019. "The performance of COD removal and hydrogen production in a single stage system from starch using the consortium PB-Z under simulated natural conditions," Energy, Elsevier, vol. 173(C), pages 951-958.
    14. Wang, Youshi & Wang, Hanpeng & Sun, Dekang & Lin, Chunjin & Yu, Xinping & Hou, Fubin & Bai, Zihan, 2024. "Permeability evolution of deep-buried coal based on NMR analysis: CO2 adsorption and water content effects," Energy, Elsevier, vol. 289(C).
    15. Ferraren-De Cagalitan, D.D.T. & Abundo, M.L.S., 2021. "A review of biohydrogen production technology for application towards hydrogen fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Li, Guang & Zhang, Ke & Yang, Bin & Liu, Fan & Weng, Yujing & Liu, Zheyu & Fang, Yitian, 2019. "Life cycle analysis of a coal to hydrogen process based on ash agglomerating fluidized bed gasification," Energy, Elsevier, vol. 174(C), pages 638-646.
    17. Janis Kramens & Oskars Svedovs & Amanda Sturmane & Edgars Vigants & Vladimirs Kirsanovs & Dagnija Blumberga, 2024. "Exploring Energy Security and Independence for Small Energy Users: A Latvian Case Study on Unleashing Stirling Engine Potential," Sustainability, MDPI, vol. 16(3), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.