IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224014257.html
   My bibliography  Save this article

Fast robust optimization of ORC based on an artificial neural network for waste heat recovery

Author

Listed:
  • Wu, Xialai
  • Lin, Ling
  • Xie, Lei
  • Chen, Junghui
  • Shan, Lu

Abstract

Uncertainty in the organic Rankine cycle (ORC) system and the highly complex ORC models pose challenges to optimal operation. A data-driven robust parametric optimization for the ORC system is proposed to ensure high and stable performance under uncertainty. The uncertainty of the cyclic variables is estimated by their distribution parameters, and the average (expected) thermodynamic performance (the net output power of the ORC) is maximized as the optimization objective while minimizing its variance. An artificial neural network with the rectified linear unit is used as a surrogate model for optimization. Then the robust parametric optimization problem can be transformed into a mixed-integer linear optimization problem with a chance-constrained form, and the robust optimal solution can be solved quickly. Case studies show that the solution time of the robust optimization problem using the proposed method is about 1.4 s, which is much less than obtaining the optimal solution based on ORC mechanism models. Meanwhile, the optimal operating condition derived by the proposed robust optimization approach outperforms that obtained by the traditional deterministic strategy. The proposed approach not only improves the robustness of the system but also demonstrates the importance of considering uncertainty in parametric optimization.

Suggested Citation

  • Wu, Xialai & Lin, Ling & Xie, Lei & Chen, Junghui & Shan, Lu, 2024. "Fast robust optimization of ORC based on an artificial neural network for waste heat recovery," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014257
    DOI: 10.1016/j.energy.2024.131652
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.