IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v300y2024ics0360544224012866.html
   My bibliography  Save this article

Optimal scheduling of a cogeneration system via Q-learning-based memetic algorithm considering demand-side response

Author

Listed:
  • Pang, Xinfu
  • Wang, Yibao
  • Yu, Yang
  • Liu, Wei

Abstract

An optimization scheduling method for cogeneration systems based on the Q-learning-based memetic algorithm (QMA) is developed to enhance the system's wind power absorption capacity and economical operation. First, an optimal scheduling model for cogeneration systems is constructed. The model integrates time-of-use electricity pricing and heating comfort into the demand side, fully exploiting the potential of demand-side response (DR) in power generation and heating. An additional heat source (AHS), which consists of an electric boiler and heat storage tank, is used to uncouple heat and power. In addition, a QMA algorithm is designed to find the optimal operating scheme for the cogeneration system. The Q-learning algorithm is introduced to dynamically adjust crossover and mutation parameters during the global evolution stage, improving the algorithm's search capability. The Taguchi method is utilized for algorithm parameter calibration. Finally, the simulation results under various operating scenarios are compared and analyzed, verifying the feasibility and effectiveness of the proposed method. The simulation results show that DR and AHS can improve the system's economic performance and wind power utilization rate. Compared with the IMA, IPSO, MA, and IABC algorithms, the QMA algorithm reduces the average economic cost by approximately 1.18 %, 2.23 %, 5.69 %, and 14.69 %, respectively.

Suggested Citation

  • Pang, Xinfu & Wang, Yibao & Yu, Yang & Liu, Wei, 2024. "Optimal scheduling of a cogeneration system via Q-learning-based memetic algorithm considering demand-side response," Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224012866
    DOI: 10.1016/j.energy.2024.131513
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2022. "Data-driven optimal scheduling of multi-energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy," Applied Energy, Elsevier, vol. 314(C).
    2. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    3. He, Yi & Guo, Su & Zhou, Jianxu & Wu, Feng & Huang, Jing & Pei, Huanjin, 2021. "The many-objective optimal design of renewable energy cogeneration system," Energy, Elsevier, vol. 234(C).
    4. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pasdeloup, Bastien & Meyer, Patrick, 2023. "Learning to select operators in meta-heuristics: An integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1296-1330.
    5. Garmabdari, R. & Moghimi, M. & Yang, F. & Lu, J., 2020. "Multi-objective optimisation and planning of grid-connected cogeneration systems in presence of grid power fluctuations and energy storage dynamics," Energy, Elsevier, vol. 212(C).
    6. Lai, Wenhao & Song, Qi & Zheng, Xiaoliang & Tao, Qiong & Chen, Hualiang, 2023. "A new version of membrane search algorithm for hybrid renewable energy systems dynamic scheduling," Renewable Energy, Elsevier, vol. 209(C), pages 262-276.
    7. Wu, Danman & Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2021. "Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat," Energy, Elsevier, vol. 233(C).
    8. Shaheen, Abdullah M. & Ginidi, Ahmed R. & El-Sehiemy, Ragab A. & Elattar, Ehab E., 2021. "Optimal economic power and heat dispatch in Cogeneration Systems including wind power," Energy, Elsevier, vol. 225(C).
    9. La Fata, Alice & Brignone, Massimo & Procopio, Renato & Bracco, Stefano & Delfino, Federico & Barilli, Riccardo & Ravasi, Martina & Zanellini, Fabio, 2022. "An efficient Energy Management System for long term planning and real time scheduling of flexible polygeneration systems," Renewable Energy, Elsevier, vol. 200(C), pages 1180-1201.
    10. Basu, Mousumi, 2023. "Scenario-based fuel-constrained heat and power scheduling of a remote microgrid," Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    2. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    3. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    4. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    5. Chen, Jie & Huang, Shoujun & Shahabi, Laleh, 2021. "Economic and environmental operation of power systems including combined cooling, heating, power and energy storage resources using developed multi-objective grey wolf algorithm," Applied Energy, Elsevier, vol. 298(C).
    6. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    7. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).
    8. Ren, Junzhi & Zeng, Yuan & Qin, Chao & Li, Bao & Wang, Ziqiang & Yuan, Quan & Zhai, Hefeng & Li, Peng, 2024. "Characterization and application of flexible operation region of virtual power plant," Applied Energy, Elsevier, vol. 371(C).
    9. Song, Yuguang & Xia, Mingchao & Yang, Liu & Chen, Qifang & Su, Su, 2023. "Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid," Renewable Energy, Elsevier, vol. 205(C), pages 747-762.
    10. Karimi, Ali & Gimelli, Alfredo & Iossa, Raffaele & Muccillo, Massimiliano, 2024. "Techno-economic simulation and sensitivity analysis of modular cogeneration with organic rankine cycle and battery energy storage system for enhanced energy performance," Energy, Elsevier, vol. 295(C).
    11. La Fata, Alice & Brignone, Massimo & Procopio, Renato & Bracco, Stefano & Delfino, Federico & Barbero, Giulia & Barilli, Riccardo, 2024. "An energy management system to schedule the optimal participation to electricity markets and a statistical analysis of the bidding strategies over long time horizons," Renewable Energy, Elsevier, vol. 228(C).
    12. Tingting Li & Wangtu Xu, 2024. "Reliable multiple allocation hub location problem under disruptions," Flexible Services and Manufacturing Journal, Springer, vol. 36(4), pages 1503-1529, December.
    13. Cui, Jia & Zhang, Ximing & Liu, Wei & Yan, Xinyue & Hu, Zhen & Li, Chaoran & Huang, Jingbo, 2024. "A novel trading optimization strategy of source-load bilateral thermoelectric spot based on industrial parks interior," Energy, Elsevier, vol. 302(C).
    14. Bootaki, Behrang & Zhang, Guoqing, 2024. "A location-production-routing problem for distributed manufacturing platforms: A neural genetic algorithm solution methodology," International Journal of Production Economics, Elsevier, vol. 275(C).
    15. Wu, Thomas & Hu, Ruifeng & Zhu, Hongyu & Jiang, Meihui & Lv, Kunye & Dong, Yunxuan & Zhang, Dongdong, 2024. "Combined IXGBoost-KELM short-term photovoltaic power prediction model based on multidimensional similar day clustering and dual decomposition," Energy, Elsevier, vol. 288(C).
    16. Li, Xiang & Yan, Xiaoyu, 2024. "Fast penetration of electric vehicles in China cannot achieve steep cuts in air emissions from road transport without synchronized renewable electricity expansion," Energy, Elsevier, vol. 301(C).
    17. He, Yi & Guo, Su & Zhou, Jianxu & Ye, Jilei & Huang, Jing & Zheng, Kun & Du, Xinru, 2022. "Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages," Renewable Energy, Elsevier, vol. 184(C), pages 776-790.
    18. Ahmad Ebrahimi & Hyun-woo Jeon & Sang-yeop Jung, 2023. "Improving Energy Consumption and Order Tardiness in Picker-to-Part Warehouses with Electric Forklifts: A Comparison of Four Evolutionary Algorithms," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    19. Lin, Xiaojie & Lin, Xueru & Zhong, Wei & Zhou, Yi, 2023. "Predictive operation optimization of multi-energy virtual power plant considering behavior uncertainty of diverse stakeholders," Energy, Elsevier, vol. 280(C).
    20. Wu, Haochi & Qiu, Dawei & Zhang, Liyu & Sun, Mingyang, 2024. "Adaptive multi-agent reinforcement learning for flexible resource management in a virtual power plant with dynamic participating multi-energy buildings," Applied Energy, Elsevier, vol. 374(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224012866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.