IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224012787.html
   My bibliography  Save this article

ReaxFF reactive molecular dynamic and density functional theory study on the co-pyrolysis mechanism of waste 1,1,1,2-tetrafluoroethane and waste plastics to produce high value-added chemicals and fuels

Author

Listed:
  • Bai, Mengna
  • Huo, Erguang
  • Wang, Jiaming
  • Zhang, Qingfa
  • Wang, Shukun
  • Cai, Shouyin
  • Zhang, Shijie

Abstract

Pyrolysis is one of the potential way for the degradation of hydrofluorocarbons, but it is difficult to make effective use of the complex pyrolysis products. The addition of plastics can provide sufficient hydrogen source for the degradation of hydrofluorocarbons to generate the high value-added chemicals and fuels. Density functional theory calculation and reactive molecular dynamic simulation are employed to investigate the co-pyrolysis mechanism of 1,1,1,2-tetrafluoroethane and low-density polyethylene in this work. The results show that the H atoms provided by low-density polyethylene promote the defluorination reactions of 1,1,1,2-tetrafluoroethane to generate HF and short chain hydrocarbons, and the number of F atoms in HF molecules accounted for nearly 80 % of the whole reaction system, achieving a better defluorination effect. The defluorination rate of 1,1,1,2-tetrafluoroethane and plastics co-pyrolysis is more than 5 times that of pure 1,1,1,2-tetrafluoroethane pyrolysis. The main co-pyrolysis products of 1,1,1,2-tetrafluoroethane and low-density polyethylene are H2, HF and short chain hydrocarbons, the purpose of hydrofluorocarbons degradation into high value-added chemicals and fuels is realized in this study. This work provides a green, effective way for the conversion waste hydrofluorocarbons and waste plastics into high value-added chemicals and fuels, and achieves the conversion of waste hydrofluorocarbon refrigerants to more economical products.

Suggested Citation

  • Bai, Mengna & Huo, Erguang & Wang, Jiaming & Zhang, Qingfa & Wang, Shukun & Cai, Shouyin & Zhang, Shijie, 2024. "ReaxFF reactive molecular dynamic and density functional theory study on the co-pyrolysis mechanism of waste 1,1,1,2-tetrafluoroethane and waste plastics to produce high value-added chemicals and fuel," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012787
    DOI: 10.1016/j.energy.2024.131505
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    2. Huo, Erguang & Hu, Zheng & Wang, Shukun & Xin, Liyong & Bai, Mengna, 2022. "Thermal decomposition and interaction mechanism of HFC-227ea/n-hexane as a zeotropic working fluid for organic Rankine cycle," Energy, Elsevier, vol. 246(C).
    3. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shijie & Yu, Yujie & Huang, Rui & Yin, Jianyong & Huo, Erguang, 2024. "ReaxFF reactive molecular dynamic and density functional theory study on supercritical water gasification of waste hydrofluorocarbons to fuels," Energy, Elsevier, vol. 299(C).
    2. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    3. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.
    4. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    5. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    6. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    7. Dong, Shengming & Zhang, Yufeng & He, Zhonglu & Deng, Na & Yu, Xiaohui & Yao, Sheng, 2018. "Investigation of Support Vector Machine and Back Propagation Artificial Neural Network for performance prediction of the organic Rankine cycle system," Energy, Elsevier, vol. 144(C), pages 851-864.
    8. Ghasemi, Hadi & Paci, Marco & Tizzanini, Alessio & Mitsos, Alexander, 2013. "Modeling and optimization of a binary geothermal power plant," Energy, Elsevier, vol. 50(C), pages 412-428.
    9. Jung-Bo Sim & Se-Jin Yook & Young Won Kim, 2023. "Development of 180 kW Organic Rankine Cycle (ORC) with a High-Efficiency Two-Stage Axial Turbine," Energies, MDPI, vol. 16(20), pages 1-20, October.
    10. Xue, Xiaodi & Guo, Cong & Du, Xiaoze & Yang, Lijun & Yang, Yongping, 2015. "Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery," Energy, Elsevier, vol. 83(C), pages 778-787.
    11. Wu, Xialai & Chen, Junghui & Xie, Lei, 2019. "Fast economic nonlinear model predictive control strategy of Organic Rankine Cycle for waste heat recovery: Simulation-based studies," Energy, Elsevier, vol. 180(C), pages 520-534.
    12. Yu, Haoshui & Gundersen, Truls & Feng, Xiao, 2018. "Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery," Energy, Elsevier, vol. 160(C), pages 330-340.
    13. Ivan Korolija & Richard Greenough, 2016. "Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery," Energies, MDPI, vol. 9(5), pages 1-20, May.
    14. Apostolos Pesyridis & Muhammad Suleman Asif & Sadegh Mehranfar & Amin Mahmoudzadeh Andwari & Ayat Gharehghani & Thanos Megaritis, 2023. "Design of the Organic Rankine Cycle for High-Efficiency Diesel Engines in Marine Applications," Energies, MDPI, vol. 16(11), pages 1-17, May.
    15. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    16. Niu, Jintao & Wang, Jiansheng & Liu, Xueling, 2023. "Thermodynamic and economic analysis of organic Rankine cycle combined with flash cycle and ejector," Energy, Elsevier, vol. 282(C).
    17. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    18. Choi, Byung Chul & Kim, Young Min, 2013. "Thermodynamic analysis of a dual loop heat recovery system with trilateral cycle applied to exhaust gases of internal combustion engine for propulsion of the 6800 TEU container ship," Energy, Elsevier, vol. 58(C), pages 404-416.
    19. Larsen, Ulrik & Pierobon, Leonardo & Wronski, Jorrit & Haglind, Fredrik, 2014. "Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles," Energy, Elsevier, vol. 65(C), pages 503-510.
    20. Yıldız Koç, 2019. "Parametric Optimisation of an ORC in a Wood Chipboard Production Facility to Recover Waste Heat Produced from the Drying and Steam Production Process," Energies, MDPI, vol. 12(19), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.