IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224009745.html
   My bibliography  Save this article

Inner-particle reaction mechanism of cellulose, hemicellulose and lignin during photo-thermal pyrolysis process: Evolution characteristics of free radicals

Author

Listed:
  • Song, Gongxiang
  • Huang, Dexin
  • Ren, Qiangqiang
  • Hu, Song
  • Xu, Jun
  • Xu, Kai
  • Jiang, Long
  • Wang, Yi
  • Su, Sheng
  • Xiang, Jun

Abstract

Based on the concentrated photo-thermal thermogravimetry analyzer (PT-TGA) reactor, the pyrolysis of the cellulose, hemicellulose and lignin with different ratios at 100 °C/min and 550–850 °C was performed. The interaction among the three components significantly reduced the reaction temperatures and increased the maximum weight loss rate. The cellulose/lignin interactions were the main reason for the increase of gas production, especially for the H2 production which reached 128.13 mL/g biomass, much higher than the calculated value of 75.35 mL/g biomass without considering the interactions. What occurred during the co-pyrolysis of cellulose/lignin was the combination of free radicals without consuming the hydrogen radicals, while the formation of chemicals in others’ interactions integrated with the hydrogen radicals inhibited the production of H2 at high temperatures. For full-component pyrolysis, the yield of C-containing gas can be calculated by adding a coefficient of interaction between two components, indicating that the effect of the three-component interaction was much lower than that of the two-component. This study established the interaction mechanism for the three components of biomass during photo-thermal pyrolysis based on free radicals.

Suggested Citation

  • Song, Gongxiang & Huang, Dexin & Ren, Qiangqiang & Hu, Song & Xu, Jun & Xu, Kai & Jiang, Long & Wang, Yi & Su, Sheng & Xiang, Jun, 2024. "Inner-particle reaction mechanism of cellulose, hemicellulose and lignin during photo-thermal pyrolysis process: Evolution characteristics of free radicals," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009745
    DOI: 10.1016/j.energy.2024.131201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tamer Y. A. Fahmy & Yehia Fahmy & Fardous Mobarak & Mohamed El-Sakhawy & Ragab E. Abou-Zeid, 2020. "Biomass pyrolysis: past, present, and future," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 17-32, January.
    2. Taylor Uekert & Christian M. Pichler & Teresa Schubert & Erwin Reisner, 2021. "Solar-driven reforming of solid waste for a sustainable future," Nature Sustainability, Nature, vol. 4(5), pages 383-391, May.
    3. Huang, Xiankun & Yin, Hongchao & Zhang, Hu & Mei, Ning & Mu, Lin, 2022. "Pyrolysis characteristics, gas products, volatiles, and thermo–kinetics of industrial lignin via TG/DTG–FTIR/MS and in–situ Py–PI–TOF/MS," Energy, Elsevier, vol. 259(C).
    4. Li, Chao & Sun, Yifan & Dong, Dehua & Gao, Guanggang & Zhang, Shu & Wang, Yi & Xiang, Jun & Hu, Song & Mortaza, Gholizadeh & Hu, Xun, 2021. "Co-pyrolysis of cellulose/lignin and sawdust: Influence of secondary condensation of the volatiles on characteristics of biochar," Energy, Elsevier, vol. 226(C).
    5. Tian Li & Chaoji Chen & Alexandra H. Brozena & J. Y. Zhu & Lixian Xu & Carlos Driemeier & Jiaqi Dai & Orlando J. Rojas & Akira Isogai & Lars Wågberg & Liangbing Hu, 2021. "Developing fibrillated cellulose as a sustainable technological material," Nature, Nature, vol. 590(7844), pages 47-56, February.
    6. Font Palma, Carolina, 2013. "Modelling of tar formation and evolution for biomass gasification: A review," Applied Energy, Elsevier, vol. 111(C), pages 129-141.
    7. Song, Gongxiang & Huang, Dexin & Li, Hanjian & Wang, Xuepeng & Ren, Qiangqiang & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2022. "Pyrolysis reaction mechanism of typical Chinese agriculture and forest waste pellets at high heating rates based on the photo-thermal TGA," Energy, Elsevier, vol. 244(PB).
    8. Xiao, Ruirui & Yang, Wei & Cong, Xingshun & Dong, Kai & Xu, Jie & Wang, Dengfeng & Yang, Xin, 2020. "Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 201(C).
    9. Ding, Yanming & Huang, Biqing & Li, Kaiyuan & Du, Wenzhou & Lu, Kaihua & Zhang, Yansong, 2020. "Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escalante, Jamin & Chen, Wei-Hsin & Tabatabaei, Meisam & Hoang, Anh Tuan & Kwon, Eilhann E. & Andrew Lin, Kun-Yi & Saravanakumar, Ayyadurai, 2022. "Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    3. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    4. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    5. Michela Costa & Maurizio La Villetta & Daniele Piazzullo & Domenico Cirillo, 2021. "A Phenomenological Model of a Downdraft Biomass Gasifier Flexible to the Feedstock Composition and the Reactor Design," Energies, MDPI, vol. 14(14), pages 1-29, July.
    6. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    7. Buentello-Montoya, David & Zhang, Xiaolei & Li, Jun & Ranade, Vivek & Marques, Simão & Geron, Marco, 2020. "Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure," Applied Energy, Elsevier, vol. 259(C).
    8. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    9. Singh, Piyush Pratap & Jaswal, Anurag & Nirmalkar, Neelkanth & Mondal, Tarak, 2023. "Synergistic effect of transition metals substitution on the catalytic activity of LaNi0.5M0.5O3 (M = Co, Cu, and Fe) perovskite catalyst for steam reforming of simulated bio-oil for green hydrogen pro," Renewable Energy, Elsevier, vol. 207(C), pages 575-587.
    10. Gabriele Calì & Paolo Deiana & Claudia Bassano & Simone Meloni & Enrico Maggio & Michele Mascia & Alberto Pettinau, 2020. "Syngas Production, Clean-Up and Wastewater Management in a Demo-Scale Fixed-Bed Updraft Biomass Gasification Unit," Energies, MDPI, vol. 13(10), pages 1-15, May.
    11. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    12. He, Qing & Guo, Qinghua & Umeki, Kentaro & Ding, Lu & Wang, Fuchen & Yu, Guangsuo, 2021. "Soot formation during biomass gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Kentaro Tsubouchi & Yuta Tsukaguchi & Takeshi Shimizu & Hirofumi Yoshikawa & Ei-ichi Hino & Yusuke Date & Kaoru Aoki & Naoki Tanifuji, 2024. "Fabrication of Functional Gypsum Boards Using Waste Eggshells to Prevent Sick Building Syndrome," Sustainability, MDPI, vol. 16(7), pages 1-13, April.
    14. Huang, Dexin & Song, Gongxiang & Li, Ruochen & Han, Hengda & He, Limo & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2023. "Evolution mechanisms of bio-oil from conventional and nitrogen-rich biomass during photo-thermal pyrolysis," Energy, Elsevier, vol. 282(C).
    15. Jiang, Yuan & Zong, Peijie & Bao, Yuan & Zhang, Xin & Wei, Haixin & Tian, Bin & Tian, Yuanyu & Qiao, Yingyun & Zhang, Juntao, 2022. "Catalytic conversion of gaseous tar using coal char catalyst in the two-stage downer reactor," Energy, Elsevier, vol. 242(C).
    16. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    17. Chen, Jian & Song, Ye & Yu, Yueyang & Xiao, Guoqing & Tam, Wai Cheong & Kong, Depeng, 2022. "The influence of a plate obstacle on the burning behavior of small scale pool fires: An experimental study," Energy, Elsevier, vol. 254(PB).
    18. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
    19. Kalina, Jacek, 2017. "Techno-economic assessment of small-scale integrated biomass gasification dual fuel combined cycle power plant," Energy, Elsevier, vol. 141(C), pages 2499-2507.
    20. Ding, Yanming & Chen, Wenlu & Zhang, Wenlong & Zhang, Xueting & Li, Changhai & Zhou, Ru & Miao, Fasheng, 2022. "Experimental and numerical simulation study of typical semi-transparent material pyrolysis with in-depth radiation based on micro and bench scales," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.