IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224009095.html
   My bibliography  Save this article

The macroeconomic impact of policy measures, technological progress and societal attitude in energy transition scenarios

Author

Listed:
  • Boonman, Hettie
  • Pisciella, Paolo
  • Reynès, Frédéric

Abstract

This paper compares the macroeconomic impacts of different decarbonization storylines until 2050 using two Computable General Equilibrium models. The modeling shocks are harmonized across models to simulate four decarbonization scenarios through three main drivers: technical development, societal attitude, and policies. The study explores the contribution of each of these drivers to the European decarbonization. The results show that the decarbonization scenarios have moderate effects on GDP; decarbonization scenarios rather result in sectoral shifts. The impact of temperature on labor productivity minimally alters expected growth levels, since larger differences in temperature between the scenarios are only expected to occur in 2100, not yet in 2050. Electricity demand is increasing in all scenarios, particularly with stronger political guidance leading to additional tax and subsidy measures to encourage the use of electricity and discourage fossil-based fuels. When society is a driving factor, it is found that circular business models result in an increase in the service industry but might have a slightly negative impact on overall growth due to stronger spillover effects linked to the manufacturing industry. Technology appears to be the only driver to facilitate decarbonization while maintaining steady economic growth.

Suggested Citation

  • Boonman, Hettie & Pisciella, Paolo & Reynès, Frédéric, 2024. "The macroeconomic impact of policy measures, technological progress and societal attitude in energy transition scenarios," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009095
    DOI: 10.1016/j.energy.2024.131136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009095
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:hal:spmain:info:hdl:2441/11505qn4ak95irt0cafaeim81j is not listed on IDEAS
    2. Fattahi, Amirhossein & Reynès, Frédéric & van der Zwaan, Bob & Sijm, Jos & Faaij, André, 2023. "Soft-linking a national computable general equilibrium model (ThreeME) with a detailed energy system model (IESA-Opt)," Energy Economics, Elsevier, vol. 123(C).
    3. Hainsch, Karlo & Löffler, Konstantin & Burandt, Thorsten & Auer, Hans & Crespo del Granado, Pedro & Pisciella, Paolo & Zwickl-Bernhard, Sebastian, 2022. "Energy transition scenarios: What policies, societal attitudes, and technology developments will realize the EU Green Deal?," Energy, Elsevier, vol. 239(PC).
    4. Zhang, Tao & Ma, Ying & Li, Angfei, 2021. "Scenario analysis and assessment of China’s nuclear power policy based on the Paris Agreement: A dynamic CGE model," Energy, Elsevier, vol. 228(C).
    5. Lin, Boqiang & Jia, Zhijie, 2018. "The energy, environmental and economic impacts of carbon tax rate and taxation industry: A CGE based study in China," Energy, Elsevier, vol. 159(C), pages 558-568.
    6. Yildirim, K. & Koyuncu, C. & Koyuncu J., 2009. "Does Temperature Affect Labor Productivity: Cross-Country Evidence," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 9(1).
    7. Landis, Florian & Fredriksson, Gustav & Rausch, Sebastian, 2021. "Between- and within-country distributional impacts from harmonizing carbon prices in the EU," Energy Economics, Elsevier, vol. 103(C).
    8. Clora, Francesco & Yu, Wusheng, 2022. "GHG emissions, trade balance, and carbon leakage: Insights from modeling thirty-one European decarbonization pathways towards 2050," Energy Economics, Elsevier, vol. 113(C).
    9. Vandyck, Toon & Saveyn, Bert & Keramidas, Kimon & Kitous, Alban & Vrontisi, Zoi, 2016. "A global stocktake of the Paris pledges: implications for energy systems and economy," Conference papers 332704, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Stefan Boeters & Luc Savard, 2011. "The Labour Market in CGE Models," Cahiers de recherche 11-20, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    11. Rutherford, Thomas F., 1995. "Extension of GAMS for complementarity problems arising in applied economic analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1299-1324, November.
    12. McFarland, James R. & Herzog, Howard J., 2006. "Incorporating carbon capture and storage technologies in integrated assessment models," Energy Economics, Elsevier, vol. 28(5-6), pages 632-652, November.
    13. Zoi Vrontisi & Kostas Fragkiadakis & Maria Kannavou & Pantelis Capros, 2020. "Energy system transition and macroeconomic impacts of a European decarbonization action towards a below 2 °C climate stabilization," Climatic Change, Springer, vol. 162(4), pages 1857-1875, October.
    14. Simon Koesler & Michael Schymura, 2015. "Substitution Elasticities In A Constant Elasticity Of Substitution Framework - Empirical Estimates Using Nonlinear Least Squares," Economic Systems Research, Taylor & Francis Journals, vol. 27(1), pages 101-121, March.
    15. Fragkos, Panagiotis & Tasios, Nikos & Paroussos, Leonidas & Capros, Pantelis & Tsani, Stella, 2017. "Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050," Energy Policy, Elsevier, vol. 100(C), pages 216-226.
    16. Brian C. O'Neill & Michael Oppenheimer & Rachel Warren & Stephane Hallegatte & Robert E. Kopp & Hans O. Pörtner & Robert Scholes & Joern Birkmann & Wendy Foden & Rachel Licker & Katharine J. Mach & Ph, 2017. "IPCC reasons for concern regarding climate change risks," Nature Climate Change, Nature, vol. 7(1), pages 28-37, January.
    17. Panagiotis Fragkos & Kostas Fragkiadakis & Leonidas Paroussos, 2021. "Reducing the Decarbonisation Cost Burden for EU Energy-Intensive Industries," Energies, MDPI, vol. 14(1), pages 1-23, January.
    18. Weitzel, Matthias & Vandyck, Toon & Rey Los Santos, Luis & Tamba, Marie & Temursho, Umed & Wojtowicz, Krzysztof, 2023. "A comprehensive socio-economic assessment of EU climate policy pathways," Ecological Economics, Elsevier, vol. 204(PA).
    19. Jean Chateau & Ruben Bibas & Elisa Lanzi, 2018. "Impacts of Green Growth Policies on Labour Markets and Wage Income Distribution: A General Equilibrium Application to Climate and Energy Policies," OECD Environment Working Papers 137, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Lianbiao & Li, Rongjing & Song, Malin & Zhu, Lei, 2019. "Can China achieve its 2030 energy development targets by fulfilling carbon intensity reduction commitments?," Energy Economics, Elsevier, vol. 83(C), pages 61-73.
    2. Zhang, Da & Peng, Hantang & Zhang, Lin, 2023. "Share of polluting input as a sufficient statistic for burden sharing," Energy Economics, Elsevier, vol. 121(C).
    3. Di Foggia, Giacomo & Beccarello, Massimo, 2024. "Designing New Energy Markets to Promote Renewables," MPRA Paper 121783, University Library of Munich, Germany.
    4. Nishiura, Osamu & Krey, Volker & Fricko, Oliver & van Ruijven, Bas & Fujimori, Shinichiro, 2024. "Integration of energy system and computable general equilibrium models: An approach complementing energy and economic representations for mitigation analysis," Energy, Elsevier, vol. 296(C).
    5. Vanessa Angst & Chiara Colesanti Senni & Markus Maibach & Martin Peter & Noe Reidt & Renger van Nieuwkoop, 2021. "Economic impacts of decarbonizing the Swiss passenger transport sector," CER-ETH Economics working paper series 21/352, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    6. Fan, Shuting & An, Kangxin & Zhang, Shihui & Wang, Can, 2024. "Cost-effective energy development pathway considering air quality co-benefits under climate target: A case study of Anhui Province in China," Applied Energy, Elsevier, vol. 353(PA).
    7. Panagiotis Fragkos, 2021. "Assessing the Role of Carbon Capture and Storage in Mitigation Pathways of Developing Economies," Energies, MDPI, vol. 14(7), pages 1-20, March.
    8. Weijiang Liu & Min Liu & Tingting Liu & Yangyang Li & Yizhe Hao, 2022. "Does a Recycling Carbon Tax with Technological Progress in Clean Electricity Drive the Green Economy?," IJERPH, MDPI, vol. 19(3), pages 1-18, February.
    9. Christoph Böhringer & Jan Schneider & Emmanuel Asane-Otoo, 2021. "Trade in Carbon and Carbon Tariffs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 669-708, April.
    10. Clora, Francesco & Yu, Wusheng & Corong, Erwin, 2023. "Alternative carbon border adjustment mechanisms in the European Union and international responses: Aggregate and within-coalition results," Energy Policy, Elsevier, vol. 174(C).
    11. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    12. Fisher-Vanden, Karen & Mansur, Erin T. & Wang, Qiong (Juliana), 2015. "Electricity shortages and firm productivity: Evidence from China's industrial firms," Journal of Development Economics, Elsevier, vol. 114(C), pages 172-188.
    13. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    14. Oliver Schenker, 2013. "Exchanging Goods and Damages: The Role of Trade on the Distribution of Climate Change Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 261-282, February.
    15. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    16. Brown, Marilyn A. & Li, Yufei & Soni, Anmol, 2020. "Are all jobs created equal? Regional employment impacts of a U.S. carbon tax," Applied Energy, Elsevier, vol. 262(C).
    17. Winchester, Niven & Reilly, John M., 2020. "The economic and emissions benefits of engineered wood products in a low-carbon future," Energy Economics, Elsevier, vol. 85(C).
    18. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    19. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    20. Piris-Cabezas, Pedro & Lubowski, Ruben N. & Leslie, Gabriela, 2023. "Estimating the potential of international carbon markets to increase global climate ambition," World Development, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.