IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224009204.html
   My bibliography  Save this article

Pore-to-meter scale modeling of heat and mass transport applied to thermal energy storage: How local thermal and velocity fluctuations affect average thermal dispersivity

Author

Listed:
  • Qu, Ming-Liang
  • Yang, Jinping
  • Foroughi, Sajjad
  • Zhang, Yifan
  • Yu, Zi-Tao
  • Blunt, Martin J.
  • Lin, Qingyang

Abstract

We use a dual-network model to simulate heat and mass transfer in porous media. The model captures pore-scale information in meter-scale simulations and allows for non-equilibrium between the solid and pore space. We apply the model to predict the effective thermal diffusivity in networks representing Bentheimer sandstone, Estaillades limestone and two random packings of monodisperse spheres. Non-Fourier transport at early times can lead to both higher and lower thermal dispersivity than currently assumed using a volume-weighted average of fluid and solid properties. Furthermore, we quantify the mechanical dispersion coefficient caused by differences in local flow velocity, which further contributes to thermal dispersion of the plume. We discuss the results in the context of the design and management of ATES (aquifer thermal energy storage). Ignoring pore-scale velocity and temperature fluctuations in the estimation of averaged properties can lead to errors of more than 50%. The work provides a framework to predict thermal properties of porous media under different flow conditions for more accurate prediction and design of thermal energy storage.

Suggested Citation

  • Qu, Ming-Liang & Yang, Jinping & Foroughi, Sajjad & Zhang, Yifan & Yu, Zi-Tao & Blunt, Martin J. & Lin, Qingyang, 2024. "Pore-to-meter scale modeling of heat and mass transport applied to thermal energy storage: How local thermal and velocity fluctuations affect average thermal dispersivity," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009204
    DOI: 10.1016/j.energy.2024.131147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Kun & Nian, Yong-Le & Cheng, Wen-Long, 2018. "Analysis and optimization of underground thermal energy storage using depleted oil wells," Energy, Elsevier, vol. 163(C), pages 1006-1016.
    2. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    3. Ankur Deep Bordoloi & David Scheidweiler & Marco Dentz & Mohammed Bouabdellaoui & Marco Abbarchi & Pietro de Anna, 2022. "Structure induced laminar vortices control anomalous dispersion in porous media," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Felix J. Meigel & Thomas Darwent & Leonie Bastin & Lucas Goehring & Karen Alim, 2022. "Dispersive transport dynamics in porous media emerge from local correlations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Rusin, Krzysztof & Ochmann, Jakub & Bartela, Łukasz & Rulik, Sebastian & Stanek, Bartosz & Jurczyk, Michał & Waniczek, Sebastian, 2022. "Influence of geometrical dimensions and particle diameter on exergy performance of packed-bed thermal energy storage," Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Barth, Florian & Schüppler, Simon & Menberg, Kathrin & Blum, Philipp, 2023. "Estimating cooling capacities from aerial images using convolutional neural networks," Applied Energy, Elsevier, vol. 349(C).
    4. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    5. Susanne A. Benz & Kathrin Menberg & Peter Bayer & Barret L. Kurylyk, 2022. "Shallow subsurface heat recycling is a sustainable global space heating alternative," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Beernink, Stijn & Bloemendal, Martin & Kleinlugtenbelt, Rob & Hartog, Niels, 2022. "Maximizing the use of aquifer thermal energy storage systems in urban areas: effects on individual system primary energy use and overall GHG emissions," Applied Energy, Elsevier, vol. 311(C).
    7. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2021. "Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation," Renewable Energy, Elsevier, vol. 176(C), pages 115-134.
    8. Qi, Cuiting & Zhou, Renjie & Zhan, Hongbin, 2023. "Analysis of heat transfer in an aquifer thermal energy storage system: On the role of two-dimensional thermal conduction," Renewable Energy, Elsevier, vol. 217(C).
    9. Christopher S. Brown & Hannah Doran & Isa Kolo & David Banks & Gioia Falcone, 2023. "Investigating the Influence of Groundwater Flow and Charge Cycle Duration on Deep Borehole Heat Exchangers for Heat Extraction and Borehole Thermal Energy Storage," Energies, MDPI, vol. 16(6), pages 1-22, March.
    10. Wang, Huaijing, 2023. "Modeling of multiple thermal fluid circulation in horizontal section of wellbores," Energy, Elsevier, vol. 282(C).
    11. Hubeck-Graudal, Helga & Kirstein, Jonas Kjeld & Ommen, Torben & Rygaard, Martin & Elmegaard, Brian, 2020. "Drinking water supply as low-temperature source in the district heating system: A case study for the city of Copenhagen," Energy, Elsevier, vol. 194(C).
    12. David Scheidweiler & Ankur Deep Bordoloi & Wenqiao Jiao & Vladimir Sentchilo & Monica Bollani & Audam Chhun & Philipp Engel & Pietro de Anna, 2024. "Spatial structure, chemotaxis and quorum sensing shape bacterial biomass accumulation in complex porous media," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Jordi García-Céspedes & Ignasi Herms & Georgina Arnó & José Juan de Felipe, 2022. "Fifth-Generation District Heating and Cooling Networks Based on Shallow Geothermal Energy: A review and Possible Solutions for Mediterranean Europe," Energies, MDPI, vol. 16(1), pages 1-31, December.
    14. Li, Shuang & Wang, Gaosheng & Zhou, Mengmeng & Song, Xianzhi & Shi, Yu & Yi, Junlin & Zhao, Jialin & Zhou, Yifan, 2024. "Thermal performance of an aquifer thermal energy storage system: Insights from novel multilateral wells," Energy, Elsevier, vol. 294(C).
    15. Wang, Jiacheng & Tan, Xianfeng & Zhao, Zhihong & Chen, Jinfan & He, Jie & Shi, Qipeng, 2024. "Coupled thermo-hydro-mechanical modeling on geothermal doublet subject to seasonal exploitation and storage," Energy, Elsevier, vol. 293(C).
    16. Fleuchaus, Paul & Schüppler, Simon & Bloemendal, Martin & Guglielmetti, Luca & Opel, Oliver & Blum, Philipp, 2020. "Risk analysis of High-Temperature Aquifer Thermal Energy Storage (HT-ATES)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Bott, Christoph & Dressel, Ingo & Bayer, Peter, 2019. "State-of-technology review of water-based closed seasonal thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Fleuchaus, Paul & Schüppler, Simon & Godschalk, Bas & Bakema, Guido & Blum, Philipp, 2020. "Performance analysis of Aquifer Thermal Energy Storage (ATES)," Renewable Energy, Elsevier, vol. 146(C), pages 1536-1548.
    20. Brown, C.S. & Kolo, I. & Lyden, A. & Franken, L. & Kerr, N. & Marshall-Cross, D. & Watson, S. & Falcone, G. & Friedrich, D. & Diamond, J., 2024. "Assessing the technical potential for underground thermal energy storage in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.