IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224009204.html
   My bibliography  Save this article

Pore-to-meter scale modeling of heat and mass transport applied to thermal energy storage: How local thermal and velocity fluctuations affect average thermal dispersivity

Author

Listed:
  • Qu, Ming-Liang
  • Yang, Jinping
  • Foroughi, Sajjad
  • Zhang, Yifan
  • Yu, Zi-Tao
  • Blunt, Martin J.
  • Lin, Qingyang

Abstract

We use a dual-network model to simulate heat and mass transfer in porous media. The model captures pore-scale information in meter-scale simulations and allows for non-equilibrium between the solid and pore space. We apply the model to predict the effective thermal diffusivity in networks representing Bentheimer sandstone, Estaillades limestone and two random packings of monodisperse spheres. Non-Fourier transport at early times can lead to both higher and lower thermal dispersivity than currently assumed using a volume-weighted average of fluid and solid properties. Furthermore, we quantify the mechanical dispersion coefficient caused by differences in local flow velocity, which further contributes to thermal dispersion of the plume. We discuss the results in the context of the design and management of ATES (aquifer thermal energy storage). Ignoring pore-scale velocity and temperature fluctuations in the estimation of averaged properties can lead to errors of more than 50%. The work provides a framework to predict thermal properties of porous media under different flow conditions for more accurate prediction and design of thermal energy storage.

Suggested Citation

  • Qu, Ming-Liang & Yang, Jinping & Foroughi, Sajjad & Zhang, Yifan & Yu, Zi-Tao & Blunt, Martin J. & Lin, Qingyang, 2024. "Pore-to-meter scale modeling of heat and mass transport applied to thermal energy storage: How local thermal and velocity fluctuations affect average thermal dispersivity," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009204
    DOI: 10.1016/j.energy.2024.131147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Kun & Nian, Yong-Le & Cheng, Wen-Long, 2018. "Analysis and optimization of underground thermal energy storage using depleted oil wells," Energy, Elsevier, vol. 163(C), pages 1006-1016.
    2. Rusin, Krzysztof & Ochmann, Jakub & Bartela, Łukasz & Rulik, Sebastian & Stanek, Bartosz & Jurczyk, Michał & Waniczek, Sebastian, 2022. "Influence of geometrical dimensions and particle diameter on exergy performance of packed-bed thermal energy storage," Energy, Elsevier, vol. 260(C).
    3. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    4. Ankur Deep Bordoloi & David Scheidweiler & Marco Dentz & Mohammed Bouabdellaoui & Marco Abbarchi & Pietro de Anna, 2022. "Structure induced laminar vortices control anomalous dispersion in porous media," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Felix J. Meigel & Thomas Darwent & Leonie Bastin & Lucas Goehring & Karen Alim, 2022. "Dispersive transport dynamics in porous media emerge from local correlations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Beernink, Stijn & Bloemendal, Martin & Kleinlugtenbelt, Rob & Hartog, Niels, 2022. "Maximizing the use of aquifer thermal energy storage systems in urban areas: effects on individual system primary energy use and overall GHG emissions," Applied Energy, Elsevier, vol. 311(C).
    4. Qi, Cuiting & Zhou, Renjie & Zhan, Hongbin, 2023. "Analysis of heat transfer in an aquifer thermal energy storage system: On the role of two-dimensional thermal conduction," Renewable Energy, Elsevier, vol. 217(C).
    5. Fleuchaus, Paul & Schüppler, Simon & Godschalk, Bas & Bakema, Guido & Blum, Philipp, 2020. "Performance analysis of Aquifer Thermal Energy Storage (ATES)," Renewable Energy, Elsevier, vol. 146(C), pages 1536-1548.
    6. Brown, C.S. & Kolo, I. & Lyden, A. & Franken, L. & Kerr, N. & Marshall-Cross, D. & Watson, S. & Falcone, G. & Friedrich, D. & Diamond, J., 2024. "Assessing the technical potential for underground thermal energy storage in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Stemmle, Ruben & Blum, Philipp & Schüppler, Simon & Fleuchaus, Paul & Limoges, Melissa & Bayer, Peter & Menberg, Kathrin, 2021. "Environmental impacts of aquifer thermal energy storage (ATES)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Jin, Wencheng & Atkinson, Trevor A. & Doughty, Christine & Neupane, Ghanashyam & Spycher, Nicolas & McLing, Travis L. & Dobson, Patrick F. & Smith, Robert & Podgorney, Robert, 2022. "Machine-learning-assisted high-temperature reservoir thermal energy storage optimization," Renewable Energy, Elsevier, vol. 197(C), pages 384-397.
    9. Tian, Lei & Wang, Jiangjiang & Zhao, Lei & Wei, Changqi, 2023. "Unsteady-state thermal performance analysis of cascaded packed-bed latent thermal storage in solar heating system," Energy, Elsevier, vol. 272(C).
    10. Ge, Gangqiang & Wang, Huanran & Li, Ruixiong & Sun, Hao & Zhang, Yufei, 2024. "Investigation and improvement of complex characteristics of packed bed thermal energy storage (PBTES) in adiabatic compressed air energy storage (A-CAES) systems," Energy, Elsevier, vol. 296(C).
    11. Sandra Cunha & Antonella Sarcinella & José Aguiar & Mariaenrica Frigione, 2023. "Perspective on the Development of Energy Storage Technology Using Phase Change Materials in the Construction Industry: A Review," Energies, MDPI, vol. 16(12), pages 1-32, June.
    12. Schüppler, Simon & Fleuchaus, Paul & Duchesne, Antoine & Blum, Philipp, 2022. "Cooling supply costs of a university campus," Energy, Elsevier, vol. 249(C).
    13. Oleg Todorov & Kari Alanne & Markku Virtanen & Risto Kosonen, 2020. "Aquifer Thermal Energy Storage (ATES) for District Heating and Cooling: A Novel Modeling Approach Applied in a Case Study of a Finnish Urban District," Energies, MDPI, vol. 13(10), pages 1-19, May.
    14. Eunyoung Jeon & Bonhan Koo & Suyeon Kim & Jieun Kim & Yeonuk Yu & Hyowon Jang & Minju Lee & Sung-Han Kim & Taejoon Kang & Sang Kyung Kim & Rhokyun Kwak & Yong Shin & Joonseok Lee, 2024. "Biporous silica nanostructure-induced nanovortex in microfluidics for nucleic acid enrichment, isolation, and PCR-free detection," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Ochmann, J. & Rusin, K. & Bartela, Ł., 2023. "Comprehensive analytical model of energy and exergy performance of the thermal energy storage," Energy, Elsevier, vol. 283(C).
    16. Nordbeck, Johannes & Bauer, Sebastian & Dahmke, Andreas & Delfs, Jens-Olaf & Gomes, Hugo & Hailemariam, Henok & Kinias, Constantin & Meier zu Beerentrup, Kerstin & Nagel, Thomas & Smirr, Christian & V, 2020. "A modular cement-based subsurface heat storage: Performance test, model development and thermal impacts," Applied Energy, Elsevier, vol. 279(C).
    17. Xia, B.Q. & Zhao, C.Y. & Yan, J. & Khosa, A.A., 2020. "Development of granular thermochemical heat storage composite based on calcium oxide," Renewable Energy, Elsevier, vol. 147(P1), pages 969-978.
    18. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Huang, Guangping & Liu, Wei Victor, 2021. "Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 165(P1), pages 334-349.
    19. Jonathan Banks & Spencer Poulette & Jens Grimmer & Florian Bauer & Eva Schill, 2021. "Geochemical Changes Associated with High-Temperature Heat Storage at Intermediate Depth: Thermodynamic Equilibrium Models for the DeepStor Site in the Upper Rhine Graben, Germany," Energies, MDPI, vol. 14(19), pages 1-23, September.
    20. Barth, Florian & Schüppler, Simon & Menberg, Kathrin & Blum, Philipp, 2023. "Estimating cooling capacities from aerial images using convolutional neural networks," Applied Energy, Elsevier, vol. 349(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.