IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v267y2023ics0360544222033333.html
   My bibliography  Save this article

CO2 capture process intensification of water-lean methyl diethanolamine-piperazine solvent: Experiments and response surface modeling

Author

Listed:
  • Choubtashani, Shima
  • Rashidi, Hamed

Abstract

Today, the use of water-lean solvents in the absorption process to reduce greenhouse gas emissions has been contemplated by many researchers. To investigate the performance of the water-lean solvent, methyl diethanolamine-piperazine-methanol, in the absorption process of carbon dioxide in the microreactor, the effect of various factors such as: concentration of methyl diethanolamine-piperazine 30–50 wt%, temperature 20–40 °C, the solvent inlet flow 3–9 ml/min and the concentration of carbon dioxide 5–15 vol% were evaluated. The carbon dioxide removal percentage, volumetric mass transfer coefficient and molar flux have been considered as responses. The Box-Behnken Response Surface method was used to design the experiments and model the results. A quadratic model has been proposed to predict the responses. The order of the effect of the variables on the CO2 removal efficiency was as follows: solvent flow rate (49.55%) > solvent concentration (24.59%) > absorption temperature (18.05%). The highest CO2 removal efficiency of 94.62% was achieved at optimal temperature of 30 °C and CO2 concentration of 10 vol%, as well as the maximum concentration of amine and solvent flow. The results show that application of methanol as a low-cost and affordable physical solvent reasonably improves the carbon capture performance.

Suggested Citation

  • Choubtashani, Shima & Rashidi, Hamed, 2023. "CO2 capture process intensification of water-lean methyl diethanolamine-piperazine solvent: Experiments and response surface modeling," Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222033333
    DOI: 10.1016/j.energy.2022.126447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222033333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarlak, Shokouh & Valeh-e-Sheyda, Peyvand, 2022. "The contribution of l-Arginine to the mass transfer performance of CO2 absorption by an aqueous solution of methyl diethanolamine in a microreactor," Energy, Elsevier, vol. 239(PD).
    2. Rashidi, Hamed & Rasouli, Parvaneh & Azimi, Hossein, 2022. "A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent: Microcontactor mass transfer study," Energy, Elsevier, vol. 244(PA).
    3. Rashidi, Hamed & Sahraie, Sasan, 2021. "Enhancing carbon dioxide absorption performance using the hybrid solvent: Diethanolamine-methanol," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gautam, Ashish & Mondal, Monoj Kumar, 2024. "Post-combustion CO2 absorption-desorption performance of novel aqueous binary amine blend of Hexamethylenediamine (HMDA) and 2-Dimethylaminoethanol (DMAE)," Energy, Elsevier, vol. 296(C).
    2. Song, Yawei & Su, Sheng & Liu, Yushuai & Zhao, Zheng & Xu, Kai & Xu, Jun & Jiang, Long & Wang, Yi & Hu, Song & Xiang, Jun, 2024. "Characteristics of OH formation during single coal particle ignition and volatile combustion in O2/N2 and O2/CO2 atmospheres," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehbani, Maryam & Rashidi, Hamed, 2023. "Simultaneous use of microfluidics, ultrasound and alcoholic solvents for improving CO2 desorption process," Energy, Elsevier, vol. 276(C).
    2. Nejati, Kaveh & Aghel, Babak, 2023. "Utilizing fly ash from a power plant company for CO2 capture in a microchannel," Energy, Elsevier, vol. 278(PB).
    3. Han, Sung-Chul & Sung, Hail & Noh, Hye-Won & Mazari, Shaukat Ali & Moon, Jong-Ho & Kim, Kyung-Min, 2024. "Synergistic effect of blended amines on carbon dioxide absorption: Thermodynamic modeling and analysis of regeneration energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    4. Fu, Kun & Zheng, Mingzhen & Fu, Dong, 2023. "Low partial pressure CO2 capture in packed tower by EHA+Diglyme water-lean absorbent," Energy, Elsevier, vol. 266(C).
    5. Sarlak, Shokouh & Valeh-e-Sheyda, Peyvand, 2022. "The contribution of l-Arginine to the mass transfer performance of CO2 absorption by an aqueous solution of methyl diethanolamine in a microreactor," Energy, Elsevier, vol. 239(PD).
    6. Rashidi, Hamed & Rasouli, Parvaneh & Azimi, Hossein, 2022. "A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent: Microcontactor mass transfer study," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222033333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.