IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003086.html
   My bibliography  Save this article

Multiple exegetically optimization of ultrasonic pretreatment and substrate mixture for biohydrogen and biomethane improvement

Author

Listed:
  • Mahmoodi-Eshkaftaki, Mahmood
  • Dalvi-Isfahan, Mohsen

Abstract

The aim of this study was to optimize the bio-hydrogen and bio-methane production process by analyzing the effects of substrate mixtures (cow manure: tomato waste) and ultrasonic factors (ultrasonic power and sonication time) on exergy efficiency. A multivariate optimization technique that combined regression modeling and desirability analysis was applied. Different proportions of cow manure and tomato waste (0–100 %) were pretreated with various levels of ultrasonic power (0.08, 0.25, and 0.42 W/mL) and sonication time (15, 30, and 45 min) based on an exergy equilibrium model. The optimal conditions were 0.33 W/mL of ultrasonic power, 23.1 min of sonication time, and a mixture of 2 % cow manure and 98 % tomato waste, which resulted in the highest desirability of the process (=0.687). Under these conditions, the input exergetic parameters (chemical, physical, and total exergies) were the lowest (1.510, 0.559, and 2.062 MJ/kg, respectively), the output exergetic parameters were the highest (0.027, 0.871, and 0.749 MJ/kg, respectively), the exergy efficiency and exergetic improvement potential rate were the highest (43.64 % and 0.73 MJ/kg, respectively), and the exergy destruction was the lowest (1.26 MJ/kg). The experiments were repeated to validate the modeling and optimization processes. The results showed that increasing the ultrasonic factors enhanced exergy efficiency and exergetic potential rate but also increased exergy destruction. A weak ultrasonic pretreatment with a high percentage of cow manure in the mixtures was found to be beneficial for improving plant efficiency and reducing system destruction.

Suggested Citation

  • Mahmoodi-Eshkaftaki, Mahmood & Dalvi-Isfahan, Mohsen, 2024. "Multiple exegetically optimization of ultrasonic pretreatment and substrate mixture for biohydrogen and biomethane improvement," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003086
    DOI: 10.1016/j.energy.2024.130537
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Rahbari, Alireza & Venkataraman, Mahesh B. & Pye, John, 2018. "Energy and exergy analysis of concentrated solar supercritical water gasification of algal biomass," Applied Energy, Elsevier, vol. 228(C), pages 1669-1682.
    3. Mahdavi, Navid & Mojaver, Parisa & Khalilarya, Shahram, 2022. "Multi-objective optimization of power, CO2 emission and exergy efficiency of a novel solar-assisted CCHP system using RSM and TOPSIS coupled method," Renewable Energy, Elsevier, vol. 185(C), pages 506-524.
    4. Gholami, Ali & Hajinezhad, Ahmad & Pourfayaz, Fathollah & Ahmadi, Mohammad Hossein, 2018. "The effect of hydrodynamic and ultrasonic cavitation on biodiesel production: An exergy analysis approach," Energy, Elsevier, vol. 160(C), pages 478-489.
    5. Ohijeagbon, Idehai O. & Waheed, M. Adekojo & Jekayinfa, Simeon O., 2013. "Methodology for the physical and chemical exergetic analysis of steam boilers," Energy, Elsevier, vol. 53(C), pages 153-164.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    2. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    3. Sanaye, Sepehr & Alizadeh, Pouria & Yazdani, Mohsen, 2022. "Thermo-economic analysis of syngas production from wet digested sewage sludge by gasification process," Renewable Energy, Elsevier, vol. 190(C), pages 524-539.
    4. Adnan, Muflih A. & Hossain, Mohammad M. & Golam Kibria, Md, 2022. "Converting waste into fuel via integrated thermal and electrochemical routes: An analysis of thermodynamic approach on thermal conversion," Applied Energy, Elsevier, vol. 311(C).
    5. Qi, Xingang & Chen, Yunan & Zhao, Jiuyun & Su, Di & Liu, Fan & Lu, Libo & Jin, Hui & Guo, Liejin, 2023. "Thermodynamic and environmental assessment of black liquor supercritical water gasification integrated online salt recovery polygeneration system," Energy, Elsevier, vol. 278(PA).
    6. Shakibi, Hamid & Shokri, Afshar & Assareh, Ehsanolah & Yari, Mortaza & Lee, Moonyong, 2023. "Using machine learning approaches to model and optimize a combined solar/natural gas-based power and freshwater cogeneration system," Applied Energy, Elsevier, vol. 333(C).
    7. Yiru Zhao & Nathalie Bourgougnon & Jean-Louis Lanoisellé & Thomas Lendormi, 2022. "Biofuel Production from Seaweeds: A Comprehensive Review," Energies, MDPI, vol. 15(24), pages 1-34, December.
    8. Ma, Y. & Li, Y.P. & Mei, H. & Nie, S. & Huang, G.H. & Li, Y.F. & Suo, C., 2024. "Potential way to plan China's power system (2021–2050) for climate change mitigation," Renewable Energy, Elsevier, vol. 225(C).
    9. Nondy, J. & Gogoi, T.K., 2022. "Tri-objective optimization of two recuperative gas turbine-based CCHP systems and 4E analyses at optimal conditions," Applied Energy, Elsevier, vol. 323(C).
    10. Jin Wu & Jiangjiang Wang & Jing Wu & Chaofan Ma, 2019. "Exergy and Exergoeconomic Analysis of a Combined Cooling, Heating, and Power System Based on Solar Thermal Biomass Gasification," Energies, MDPI, vol. 12(12), pages 1-19, June.
    11. Mondal, Arijit & Giri, Binoy Krishna & Roy, Sankar Kumar, 2023. "An integrated sustainable bio-fuel and bio-energy supply chain: A novel approach based on DEMATEL and fuzzy-random robust flexible programming with Me measure," Applied Energy, Elsevier, vol. 343(C).
    12. Peng, Zhiyong & Xu, Jialing & Rong, Siqi & Luo, Kui & Lu, Libo & Jin, Hui & Zhao, Qiuyang & Guo, Liejin, 2023. "Thermodynamic and environmental analysis for multi-component supercritical thermal fluid generation by supercritical water gasification of oilfield wastewater," Energy, Elsevier, vol. 269(C).
    13. Mojarab Soufiyan, Mohamad & Dadak, Ali & Hosseini, Seyed Sina & Nasiri, Farshid & Dowlati, Majid & Tahmasebi, Maryam & Aghbashlo, Mortaza, 2016. "Comprehensive exergy analysis of a commercial tomato paste plant with a double-effect evaporator," Energy, Elsevier, vol. 111(C), pages 910-922.
    14. Ghorbani, Bahram & Mahyari, Kimiya Borzoo & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2020. "Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery," Renewable Energy, Elsevier, vol. 148(C), pages 1227-1243.
    15. Ge, Mingming & Manikkam, Pratulya & Ghossein, Joe & Kumar Subramanian, Roshan & Coutier-Delgosha, Olivier & Zhang, Guangjian, 2022. "Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects," Energy, Elsevier, vol. 254(PC).
    16. Madejski, Paweł & Żymełka, Piotr, 2020. "Calculation methods of steam boiler operation factors under varying operating conditions with the use of computational thermodynamic modeling," Energy, Elsevier, vol. 197(C).
    17. Aghbashlo, Mortaza & Mandegari, Mohsen & Tabatabaei, Meisam & Farzad, Somayeh & Mojarab Soufiyan, Mohamad & Görgens, Johann F., 2018. "Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production," Energy, Elsevier, vol. 149(C), pages 623-638.
    18. Li, Jie & Suvarna, Manu & Pan, Lanjia & Zhao, Yingru & Wang, Xiaonan, 2021. "A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification," Applied Energy, Elsevier, vol. 304(C).
    19. Guo, Shenghui & Wang, Yu & Shang, Fei & Yi, Lei & Chen, Yunan & Chen, Bin & Guo, Liejin, 2023. "Thermodynamic analysis of the series system for the supercritical water gasification of coal-water slurry," Energy, Elsevier, vol. 283(C).
    20. Aghbashlo, Mortaza & Tabatabaei, Meisam & Khalife, Esmail & Roodbar Shojaei, Taha & Dadak, Ali, 2018. "Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide," Energy, Elsevier, vol. 149(C), pages 967-978.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.