IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003025.html
   My bibliography  Save this article

The mechanical response of energy pile groups in layered cross-anisotropic soils under vertical loadings

Author

Listed:
  • Ai, Zhi Yong
  • Feng, Wei Yong

Abstract

The mechanical response of energy pile groups in layered cross-anisotropic soils under vertical loadings is studied with the aid of the coupled finite element method - boundary element method (FEM-BEM). The single energy pile is simulated based on the finite element theory, which then is extended to energy pile groups. The global flexibility matrix for soils is obtained by considering the coupling effects of vertical and thermal loadings. The coupled FEM-BEM equation for the interaction between energy pile groups and soils is derived based on the displacement compatibility condition at the pile-soil interface. According to the displacement coordination condition and force balance in the rigid cap, the displacement of the cap and axial forces of pile groups can be solved. The presented theory is validated by comparing the calculated results with numerical simulations and field test results in existing literature. Finally, effects of the thermal loading, pile-soil stiffness ratio, pile spacing, cross-anisotropy of Young's modulus and the stratification are discussed.

Suggested Citation

  • Ai, Zhi Yong & Feng, Wei Yong, 2024. "The mechanical response of energy pile groups in layered cross-anisotropic soils under vertical loadings," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003025
    DOI: 10.1016/j.energy.2024.130531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fadejev, Jevgeni & Simson, Raimo & Kurnitski, Jarek & Haghighat, Fariborz, 2017. "A review on energy piles design, sizing and modelling," Energy, Elsevier, vol. 122(C), pages 390-407.
    2. Ai, Zhi Yong & Ye, Jia Ming & Zhao, Yong Zhi, 2022. "The performance analysis of energy piles in cross-anisotropic soils," Energy, Elsevier, vol. 255(C).
    3. Georgiadis, Konstantinos & Skordas, Dimitrios & Kamas, Ioannis & Comodromos, Emilios, 2020. "Heating and cooling induced stresses and displacements in heat exchanger piles in sand," Renewable Energy, Elsevier, vol. 147(P2), pages 2599-2617.
    4. Ng, C.W.W. & Farivar, A. & Gomaa, S.M.M.H. & Shakeel, M. & Jafarzadeh, F., 2021. "Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading," Renewable Energy, Elsevier, vol. 172(C), pages 998-1012.
    5. Ai, Zhi Yong & Ye, Jia Ming, 2023. "Thermo-mechanical analysis of pipe energy piles in layered cross-isotropic soils," Energy, Elsevier, vol. 277(C).
    6. Lichen Li & Longlong Dong & Chunhua Lu & Wenbing Wu & Minjie Wen & Rongzhu Liang, 2021. "Analysis of Bearing Characteristics of Energy Pile Group Based on Exponential Model," Energies, MDPI, vol. 14(21), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Wei Yong & Ai, Zhi Yong, 2024. "Behavior analysis of energy piles in layered transversely isotropic saturated soils," Renewable Energy, Elsevier, vol. 226(C).
    2. Heidari, Bahareh & Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan, 2022. "Energy piles under lateral loading: Analytical and numerical investigations," Renewable Energy, Elsevier, vol. 182(C), pages 172-191.
    3. Zhao, Yong Zhi & Shi, Zhenming & Ai, Zhi Yong, 2024. "Evolution of mechanical and thermal behaviors of energy piles considering soil consolidation," Applied Energy, Elsevier, vol. 361(C).
    4. Ai, Zhi Yong & Ye, Jia Ming, 2023. "Thermo-mechanical analysis of energy piled raft foundations in layered cross-anisotropic soils," Renewable Energy, Elsevier, vol. 219(P2).
    5. Jinli Xie & Yinghong Qin, 2021. "Heat Transfer and Bearing Characteristics of Energy Piles: Review," Energies, MDPI, vol. 14(20), pages 1-15, October.
    6. Bao, Xiaohua & Qi, Xuedong & Cui, Hongzhi & Tang, Waiching & Chen, Xiangsheng, 2022. "Experimental study on thermal response of a PCM energy pile in unsaturated clay," Renewable Energy, Elsevier, vol. 185(C), pages 790-803.
    7. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Jensen, Rasmus Lund & Madsen, Søren, 2020. "A case study of the sizing and optimisation of an energy pile foundation (Rosborg, Denmark)," Renewable Energy, Elsevier, vol. 147(P2), pages 2724-2735.
    8. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
    9. Rotta Loria, Alessandro F., 2021. "The thermal energy storage potential of underground tunnels used as heat exchangers," Renewable Energy, Elsevier, vol. 176(C), pages 214-227.
    10. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Ma, Qijie & Fan, Jianhua & Liu, Hantao, 2023. "Energy pile-based ground source heat pump system with seasonal solar energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 1132-1146.
    12. Paula Sankelo & Kaiser Ahmed & Alo Mikola & Jarek Kurnitski, 2022. "Renovation Results of Finnish Single-Family Renovation Subsidies: Oil Boiler Replacement with Heat Pumps," Energies, MDPI, vol. 15(20), pages 1-18, October.
    13. Laveet Kumar & Md. Shouquat Hossain & Mamdouh El Haj Assad & Mansoor Urf Manoo, 2022. "Technological Advancements and Challenges of Geothermal Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(23), pages 1-18, November.
    14. McKenna, P. & Turner, W.J.N. & Finn, D.P., 2018. "Geocooling with integrated PCM thermal energy storage in a commercial building," Energy, Elsevier, vol. 144(C), pages 865-876.
    15. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    16. Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
    17. M. M. Mousa & A. M. Bayomy & M. Z. Saghir, 2020. "Experimental and Numerical Study on Energy Piles with Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-21, September.
    18. Ding, Xuanming & Peng, Chen & Wang, Chenglong & Kong, Gangqiang, 2022. "Heat transfer performance of energy piles in seasonally frozen soil areas," Renewable Energy, Elsevier, vol. 190(C), pages 903-918.
    19. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
    20. Marco Belliardi & Nerio Cereghetti & Paola Caputo & Simone Ferrari, 2021. "A Method to Analyze the Performance of Geocooling Systems with Borehole Heat Exchangers. Results in a Monitored Residential Building in Southern Alps," Energies, MDPI, vol. 14(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.