IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544224000860.html
   My bibliography  Save this article

Operation and control of compact offshore combined cycles for power generation

Author

Listed:
  • Montañés, Rubén M.
  • Zotică, Cristina
  • Reyes-Lúa, Adriana

Abstract

Gas turbines are the main means for generating power in offshore installations. To increase energy efficiency, and thus reduce CO2 emissions, a steam bottoming cycle can be added to produce additional power by recovering surplus heat from the gas turbine exhaust. Due to space constraints, this solution is not widespread for offshore power generation. To enable deployment, the system must be compact and be able to provide varying power demands. In this paper, we analyze the operation and control problem for such compact combined cycles, consisting of two gas turbines and one steam bottoming cycle. We analyze the steady-state performance of the combined cycle with respect to efficiency and CO2 emissions for two control strategies for coordinating the power setpoint of the two gas turbines. Equal load allocation of the gas turbines showed a higher thermal efficiency and lower emissions compared to keeping one gas turbine close to nominal and letting the second one handle load variations. The main controlled variables for the steam bottoming cycle are the superheated steam pressure and temperature. We implement decentralized control strategies based on standard PID-controllers and nonlinear feedforward. Due to reduced throttle losses, sliding pressure shows higher efficiency and lower CO2 emissions compared to keeping a constant steam pressure, which conversely provides a better temperature dynamic response and may be necessary with highly varying power demand.

Suggested Citation

  • Montañés, Rubén M. & Zotică, Cristina & Reyes-Lúa, Adriana, 2024. "Operation and control of compact offshore combined cycles for power generation," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000860
    DOI: 10.1016/j.energy.2024.130315
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000860
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mazzetti, Marit J. & Hagen, Brede A.L. & Skaugen, Geir & Lindqvist, Karl & Lundberg, Steinar & Kristensen, Oddrun A., 2021. "Achieving 50% weight reduction of offshore steam bottoming cycles," Energy, Elsevier, vol. 230(C).
    2. Jonshagen, K. & Genrup, M., 2010. "Improved load control for a steam cycle combined heat and power plant," Energy, Elsevier, vol. 35(4), pages 1694-1700.
    3. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2014. "Oil and gas platforms with steam bottoming cycles: System integration and thermoenvironomic evaluation," Applied Energy, Elsevier, vol. 131(C), pages 222-237.
    4. Nord, Lars O. & Martelli, Emanuele & Bolland, Olav, 2014. "Weight and power optimization of steam bottoming cycle for offshore oil and gas installations," Energy, Elsevier, vol. 76(C), pages 891-898.
    5. M. Montañés, Rubén & Hagen, Brede & Deng, Han & Skaugen, Geir & Morin, Nicolas & Andersen, Marius & J. Mazzetti, Marit, 2023. "Design optimization of compact gas turbine and steam combined cycles for combined heat and power production in a FPSO system–A case study," Energy, Elsevier, vol. 282(C).
    6. Hübel, Moritz & Meinke, Sebastian & Andrén, Marcus T. & Wedding, Christoffer & Nocke, Jürgen & Gierow, Conrad & Hassel, Egon & Funkquist, Jonas, 2017. "Modelling and simulation of a coal-fired power plant for start-up optimisation," Applied Energy, Elsevier, vol. 208(C), pages 319-331.
    7. Deng, Han & Skaugen, Geir & Næss, Erling & Zhang, Mingjie & Øiseth, Ole A., 2021. "A novel methodology for design optimization of heat recovery steam generators with flow-induced vibration analysis," Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Montañés, Rubén & Hagen, Brede & Deng, Han & Skaugen, Geir & Morin, Nicolas & Andersen, Marius & J. Mazzetti, Marit, 2023. "Design optimization of compact gas turbine and steam combined cycles for combined heat and power production in a FPSO system–A case study," Energy, Elsevier, vol. 282(C).
    2. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    3. Luca Riboldi & Steve Völler & Magnus Korpås & Lars O. Nord, 2019. "An Integrated Assessment of the Environmental and Economic Impact of Offshore Oil Platform Electrification," Energies, MDPI, vol. 12(11), pages 1-21, June.
    4. Rivera-Alvarez, Alejandro & Coleman, Michael J. & Ordonez, Juan C., 2015. "Ship weight reduction and efficiency enhancement through combined power cycles," Energy, Elsevier, vol. 93(P1), pages 521-533.
    5. Vidoza, Jorge A. & Andreasen, Jesper Graa & Haglind, Fredrik & dos Reis, Max M.L. & Gallo, Waldyr, 2019. "Design and optimization of power hubs for Brazilian off-shore oil production units," Energy, Elsevier, vol. 176(C), pages 656-666.
    6. Mazzetti, Marit J. & Hagen, Brede A.L. & Skaugen, Geir & Lindqvist, Karl & Lundberg, Steinar & Kristensen, Oddrun A., 2021. "Achieving 50% weight reduction of offshore steam bottoming cycles," Energy, Elsevier, vol. 230(C).
    7. Martelli, Emanuele & Freschini, Marco & Zatti, Matteo, 2020. "Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming," Applied Energy, Elsevier, vol. 267(C).
    8. Zhou, Li & Liao, Zuwei & Wang, Jingdai & Jiang, Binbo & Yang, Yongrong & Du, Wenli, 2015. "Energy configuration and operation optimization of refinery fuel gas networks," Applied Energy, Elsevier, vol. 139(C), pages 365-375.
    9. Deng, Han & Skaugen, Geir & Næss, Erling & Zhang, Mingjie & Øiseth, Ole A., 2021. "A novel methodology for design optimization of heat recovery steam generators with flow-induced vibration analysis," Energy, Elsevier, vol. 226(C).
    10. Zhang, Guangming & Zhang, Chao & Wang, Wei & Cao, Huan & Chen, Zhenyu & Niu, Yuguang, 2023. "Offline reinforcement learning control for electricity and heat coordination in a supercritical CHP unit," Energy, Elsevier, vol. 266(C).
    11. Ma, Tingshan & Li, Zhengkuan & Lv, Kai & Chang, Dongfeng & Hu, Wenshuai & Zou, Ying, 2024. "Design and performance analysis of deep peak shaving scheme for thermal power units based on high-temperature molten salt heat storage system," Energy, Elsevier, vol. 288(C).
    12. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2018. "Targeting and design of heating utility system for offshore platform," Energy, Elsevier, vol. 146(C), pages 98-111.
    13. Nami, Hossein & Ertesvåg, Ivar S. & Agromayor, Roberto & Riboldi, Luca & Nord, Lars O., 2018. "Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - Energy and exergy analysis," Energy, Elsevier, vol. 165(PB), pages 1060-1071.
    14. Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.
    15. Scaccabarozzi, Roberto & Tavano, Michele & Invernizzi, Costante Mario & Martelli, Emanuele, 2018. "Comparison of working fluids and cycle optimization for heat recovery ORCs from large internal combustion engines," Energy, Elsevier, vol. 158(C), pages 396-416.
    16. Powell, Kody M. & Sriprasad, Akshay & Cole, Wesley J. & Edgar, Thomas F., 2014. "Heating, cooling, and electrical load forecasting for a large-scale district energy system," Energy, Elsevier, vol. 74(C), pages 877-885.
    17. Barrera, Julian Esteban & Bazzo, Edson & Kami, Eduardo, 2015. "Exergy analysis and energy improvement of a Brazilian floating oil platform using Organic Rankine Cycles," Energy, Elsevier, vol. 88(C), pages 67-79.
    18. Zhang, Zhijiang & Tian, Zhaofei & Ma, Xiaoyu, 2024. "Dynamic exergy analysis of feed water heater in nuclear power plant during start-up process," Energy, Elsevier, vol. 292(C).
    19. Rúa, Jairo & Nord, Lars O., 2020. "Optimal control of flexible natural gas combined cycles with stress monitoring: Linear vs nonlinear model predictive control," Applied Energy, Elsevier, vol. 265(C).
    20. Luca Riboldi & Marcin Pilarczyk & Lars O. Nord, 2021. "The Impact of Process Heat on the Decarbonisation Potential of Offshore Installations by Hybrid Energy Systems," Energies, MDPI, vol. 14(23), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.