IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223035296.html
   My bibliography  Save this article

Dynamic analysis of novel bionic piezoelectric vibration energy harvester for power transformer

Author

Listed:
  • Zhou, Weipeng
  • Du, Dongmei
  • Cui, Qian
  • Yang, Ziming
  • Lu, Chang
  • He, Qing

Abstract

Inspired by the morphological transformation of spiders during motion, a novel bionic spider-type piezoelectric vibration energy harvester is proposed. By observing the movement of spiders in nature, we simulated their skeleton structure and constructed a model collection structure using three pairs of symmetrical flexible beams with rods corresponding to the pinholes. The displacement of the middle mass at the free end causes the substrate beam to bend and deform, thereby driving the piezoelectric element to generate voltage. The detailed descriptions of the design steps and principles is provided. We also developed a concentrated mass-spring model for theoretical analysis, which is verified through numerical simulation. We investigated the dynamics of the bionic piezoelectric energy harvester under swept frequency and harmonic excitation. The results demonstrated that the harvester experiences localized vibrations, including broadband high-frequency oscillations. We evaluated the energy harvesting performance of the harvester under different excitations in the frequency range of 108–115 Hz. At a frequency of 111 Hz and an acceleration of 1 g (=9.81 m/s2), the average power output is 0.63 mW. The maximum power output of 5.66 mW can be achieved at an excitation acceleration of 3 g and an operating condition of 111.5 Hz.

Suggested Citation

  • Zhou, Weipeng & Du, Dongmei & Cui, Qian & Yang, Ziming & Lu, Chang & He, Qing, 2024. "Dynamic analysis of novel bionic piezoelectric vibration energy harvester for power transformer," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035296
    DOI: 10.1016/j.energy.2023.130135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223035296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Xiangyu & Qiu, Chaorui & Li, Guo & Ma, Ming & Yang, Shuai & Xu, Zhuo & Li, Fei, 2020. "High output power density of a shear-mode piezoelectric energy harvester based on Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals," Applied Energy, Elsevier, vol. 271(C).
    2. Don Isarakorn & Subhawat Jayasvasti & Phosy Panthongsy & Pattanaphong Janphuang & Kazuhiko Hamamoto, 2019. "Design and Evaluation of Double-Stage Energy Harvesting Floor Tile," Sustainability, MDPI, vol. 11(20), pages 1-12, October.
    3. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    4. Ghomian, Taher & Mehraeen, Shahab, 2019. "Survey of energy scavenging for wearable and implantable devices," Energy, Elsevier, vol. 178(C), pages 33-49.
    5. Weipeng Zhou & Dongmei Du & Qian Cui & Chang Lu & Yuhao Wang & Qing He, 2022. "Recent Research Progress in Piezoelectric Vibration Energy Harvesting Technology," Energies, MDPI, vol. 15(3), pages 1-33, January.
    6. Zhang, Jinhui & Qin, Lifeng, 2019. "A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism," Applied Energy, Elsevier, vol. 240(C), pages 26-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Jianan & Qin, Weiyang & Deng, Wangzheng & Zhang, Pengtian & Zhou, Zhiyong, 2021. "Harvesting weak vibration energy by integrating piezoelectric inverted beam and pendulum," Energy, Elsevier, vol. 227(C).
    2. Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
    3. Alqaleiby, Hossam & Ayyad, Mahmoud & Hajj, Muhammad R. & Ragab, Saad A. & Zuo, Lei, 2024. "Effects of piezoelectric energy harvesting from a morphing flapping tail on its performance," Applied Energy, Elsevier, vol. 353(PA).
    4. Aleksandrova, M.P. & Tsanev, T.D. & Pandiev, I.M. & Dobrikov, G.H., 2020. "Study of piezoelectric behaviour of sputtered KNbO3 nanocoatings for flexible energy harvesting," Energy, Elsevier, vol. 205(C).
    5. Md Maruf Hossain Shuvo & Twisha Titirsha & Nazmul Amin & Syed Kamrul Islam, 2022. "Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare," Energies, MDPI, vol. 15(20), pages 1-50, October.
    6. Smith, Eric & Hosseini, Seyed Ehsan, 2019. "Human Body Micro-power plant," Energy, Elsevier, vol. 183(C), pages 16-24.
    7. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    8. Gu, Yuhan & Liu, Weiqun & Zhao, Caiyou & Wang, Ping, 2020. "A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting," Applied Energy, Elsevier, vol. 266(C).
    9. Michele Bonnin & Fabio L. Traversa & Fabrizio Bonani, 2022. "An Impedance Matching Solution to Increase the Harvested Power and Efficiency of Nonlinear Piezoelectric Energy Harvesters," Energies, MDPI, vol. 15(8), pages 1-17, April.
    10. Eghbali, Pejman & Younesian, Davood & Farhangdoust, Saman, 2020. "Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators," Applied Energy, Elsevier, vol. 270(C).
    11. Yu, Han & Hou, Chengwei & Shan, Xiaobiao & Zhang, Xingxu & Song, Henan & Zhang, Xiaofan & Xie, Tao, 2022. "A novel seesaw-like piezoelectric energy harvester for low frequency vibration," Energy, Elsevier, vol. 261(PB).
    12. Kan, Junwu & Zhang, Li & Wang, Shuyun & Lin, Shijie & Yang, Zemeng & Meng, Fanxu & Zhang, Zhonghua, 2023. "Design and characterization of a self-excited unibody piezoelectric energy harvester by utilizing rotationally induced pendulation of along-groove iron balls," Energy, Elsevier, vol. 285(C).
    13. Zhao, Huai & Ouyang, Huajiang, 2021. "A capsule-structured triboelectric energy harvester with stick-slip vibration and vibro-impact," Energy, Elsevier, vol. 235(C).
    14. Peng, Yan & Xu, Zhibing & Wang, Min & Li, Zhongjie & Peng, Jinlin & Luo, Jun & Xie, Shaorong & Pu, Huayan & Yang, Zhengbao, 2021. "Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators," Renewable Energy, Elsevier, vol. 172(C), pages 551-563.
    15. He, Jian & Fan, Xueming & Mu, Jiliang & Wang, Chao & Qian, Jichao & Li, Xiucheng & Hou, Xiaojuan & Geng, Wenping & Wang, Xiangdong & Chou, Xiujian, 2020. "3D full-space triboelectric-electromagnetic hybrid nanogenerator for high-efficient mechanical energy harvesting in vibration system," Energy, Elsevier, vol. 194(C).
    16. Liu, Qi & Qin, Weiyang & Yang, Tao & Deng, Wangzheng & Zhou, Zhiyong, 2023. "Harvesting weak vibration energy by amplified inertial force and super-harmonic vibration," Energy, Elsevier, vol. 263(PD).
    17. Sargolzaeiaval, Yasaman & Ramesh, Viswanath Padmanabhan & Ozturk, Mehmet C., 2022. "A comprehensive analytical model for thermoelectric body heat harvesting incorporating the impact of human metabolism and physical activity," Applied Energy, Elsevier, vol. 324(C).
    18. Rezaei, Masoud & Talebitooti, Roohollah & Liao, Wei-Hsin, 2022. "Investigations on magnetic bistable PZT-based absorber for concurrent energy harvesting and vibration mitigation: Numerical and analytical approaches," Energy, Elsevier, vol. 239(PE).
    19. Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
    20. Zhu, Qiangguo & Wang, Guangqing & Zheng, Youcheng & Liu, Zhoulong & Zhou, Shuo & Zhang, Beiqi, 2022. "Coupling nonlinearities and dynamics between the hybrid tri-stable piezoelectric energy harvester and nonlinear interfaced circuit," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.