IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4032-d828361.html
   My bibliography  Save this article

Energy Storage Benefits Assessment Using Multiple-Choice Criteria: The Case of Drini River Cascade, Albania

Author

Listed:
  • Lorenc Malka

    (Department of Energy, Faculty of Mechanical Engineering, Polytechnic University of Tirana, 1010 Tirana, Albania)

  • Alfred Daci

    (Department of Mathematical Engineering, Faculty of Mathematics Engineering and Physical Engineering, Polytechnic University of Tirana, 1010 Tirana, Albania)

  • Alban Kuriqi

    (CERIS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
    Civil Engineering Department, University for Business and Technology, 10000 Pristina, Kosovo)

  • Pietro Bartocci

    (Instituto de Carboquímica (ICB-CSIC), Miguel Luesma Castán 4, 50018 Zaragoza, Spain)

  • Ermonela Rrapaj

    (Department of Hydraulic & Hydrotechnical, Faculty of Civil Engineering, Polytechnic University of Tirana, 1010 Tirana, Albania)

Abstract

Albania’s electricity sector lacks energy storage systems (ESS); hence, large quantities of electricity generated during the off-peak time, and excess electricity cannot be stored. On the other hand, the transmission capacity upgrades do not keep pace with the growth in peak electric demand; thus, congestion-related issues occur. Congestion of transmission lines has led to considerable uncertainties. Drin River cascade is located north of Albania. It possesses enormous potential energy that is not used due to a lack of ESS. Security of supply, rational use of renewable energy sources (RES), diversification of the electricity sector, increased competitiveness, sheltering more future RES capacities that can benefit from deferring investment in the existing transmission system, and environmental protection are some of these the main benefits of integrating ESS. Regarding the energy transition, the Albanian government’s endeavor aims to maintain and further develop a flexible, sustainable, secure, efficiently supplied, and affordable energy supply system. The results of the simulation executed by using ES-select software to produce multiple benefits from a single device from the chosen application’s list (App1–App6) showed that the most adequate ESS for storing excess electricity in the Drin River cascade are: compressed air energy storage (CAES-c), pumped hydro energy storage (PHES), and sodium-sulfur batteries (NaS). Integrating such systems in the central or bulk generation makes the circumvented cost in 10 years profitable; therefore, moving towards 2030, it would be extremely difficult to tackle the energy sector’s challenges alone, without integrating the ESS.

Suggested Citation

  • Lorenc Malka & Alfred Daci & Alban Kuriqi & Pietro Bartocci & Ermonela Rrapaj, 2022. "Energy Storage Benefits Assessment Using Multiple-Choice Criteria: The Case of Drini River Cascade, Albania," Energies, MDPI, vol. 15(11), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4032-:d:828361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4032/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haji Bashi, Mazaher & De Tommasi, Luciano & Le Cam, Andreea & Relaño, Lorena Sánchez & Lyons, Padraig & Mundó, Joana & Pandelieva-Dimova, Ivanka & Schapp, Henrik & Loth-Babut, Karolina & Egger, Christ, 2023. "A review and mapping exercise of energy community regulatory challenges in European member states based on a survey of collective energy actors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    2. Arkadiusz Orzechowski & Małgorzata Bombol, 2022. "Energy Security, Sustainable Development and the Green Bond Market," Energies, MDPI, vol. 15(17), pages 1-17, August.
    3. Song, Aifeng & Rasool, Zeeshan & Nazar, Raima & Anser, Muhammad Khalid, 2024. "Towards a greener future: How green technology innovation and energy efficiency are transforming sustainability," Energy, Elsevier, vol. 290(C).
    4. Guerra, K. & Welfle, A. & Gutiérrez-Alvarez, R. & Freer, M. & Ma, L. & Haro, P., 2024. "The role of energy storage in Great Britain's future power system: focus on hydrogen and biomass," Applied Energy, Elsevier, vol. 357(C).
    5. Li, Ximei & Gao, Jianmin & Chen, Bingyuan & You, Shi & Zheng, Yi & Du, Qian & Qin, Yukun, 2023. "Multi-objective optimization of district heating systems with turbine-driving fans and pumps considering economic, exergic, and environmental aspects," Energy, Elsevier, vol. 277(C).
    6. Chong Shao & Bolin Zhang & Bo Wei & Wenfei Liu & Yong Yang & Zhaoyuan Wu, 2023. "A Health-Aware Energy Storage Sharing Mechanism for a Renewable Energy Base," Energies, MDPI, vol. 16(14), pages 1-22, July.
    7. Li, Hang & Ma, Hongling & Zhao, Kai & Zhu, Shijie & Yang, Kun & Zeng, Zhen & Zheng, Zhuyan & Yang, Chunhe, 2024. "Parameter design of the compressed air energy storage salt cavern in highly impure rock salt formations," Energy, Elsevier, vol. 286(C).
    8. Liu, Lu & Shao, Shuangquan, 2023. "Recent advances of low-temperature cascade phase change energy storage technology: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    9. Ikhlef, Khaoula & Larbi, Salah & Üçgül, İbrahim, 2022. "Experimental study of different thermal storage system effects on the performance of a small prototype solar chimney power plant," Renewable Energy, Elsevier, vol. 200(C), pages 516-526.
    10. de Jesus, Ábio Xavier Cardoso & Pinheiro Neto, Daywes & Domingues, Elder Geraldo, 2023. "Computational tool for technical-economic analysis of photovoltaic microgeneration in Brazil," Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4032-:d:828361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.