IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223032796.html
   My bibliography  Save this article

Performance evaluation of a sand energy storage unit using response surface methodology

Author

Listed:
  • Yousef, Bashria A.A.
  • Radwan, Ali
  • Haridy, Salah
  • Alajmi, Noura

Abstract

The utilization of affordable and cost-effective storage materials is a crucial factor in the development of such systems. In this study, the influence of coil pitch, inlet fluid temperature and hot fluid velocity on sand based thermal energy storage (TES) unit is investigated, using experimental results and theoretical models. The experimental segment of this study focuses on measuring the thermophysical properties of two sand samples obtained from different locations within the United Arab Emirates. A conjugated heat transfer model is developed to predict TES using the experimentally measured sand properties. A regression model utilizing response surface methodology (RSM) approach is developed to represent the energy stored per kilogram of sand as a function of the input factors. Furthermore, an optimization algorithm is employed to determine the optimal values of input factors that maximize the energy storage density. The results reveal that the three factors (fluid inlet temperature, velocity, and number of coil turns) significantly affect the stored thermal energy. The RSM analysis illustrates that maintaining high levels of both inlet temperature and fluid velocity maximizes the energy stored. Similarly, keeping inlet temperature and coil turns at the high level maximizes the energy stored. The optimized sand energy storage unit mass reaches 6.348 kJ/kg after an 8-h charging period, with an associated pressure drop of 71.4 Pa for the currently designed unit.

Suggested Citation

  • Yousef, Bashria A.A. & Radwan, Ali & Haridy, Salah & Alajmi, Noura, 2024. "Performance evaluation of a sand energy storage unit using response surface methodology," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032796
    DOI: 10.1016/j.energy.2023.129885
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
    2. Zhou, Hao & Lai, Zhenya & Cen, Kefa, 2022. "Experimental study on energy storage performances of packed bed with different solid materials," Energy, Elsevier, vol. 246(C).
    3. Diago, Miguel & Iniesta, Alberto Crespo & Soum-Glaude, Audrey & Calvet, Nicolas, 2018. "Characterization of desert sand to be used as a high-temperature thermal energy storage medium in particle solar receiver technology," Applied Energy, Elsevier, vol. 216(C), pages 402-413.
    4. Chai, Lei & Wang, Liang & Liu, Jia & Yang, Liang & Chen, Haisheng & Tan, Chunqing, 2014. "Performance study of a packed bed in a closed loop thermal energy storage system," Energy, Elsevier, vol. 77(C), pages 871-879.
    5. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akbarzadeh, Alireza & Ahmadlouydarab, Majid & Niaei, Aligholi, 2021. "Capabilities of α-Al2O3, γ-Al2O3, and bentonite dry powders used in flat plate solar collector for thermal energy storage," Renewable Energy, Elsevier, vol. 173(C), pages 704-720.
    2. Beata Pytlik & Daniel Smykowski & Piotr Szulc, 2022. "The Impact of Baffle Geometry in the PCM Heat Storage Unit on the Charging Process with High and Low Water Streams," Energies, MDPI, vol. 15(24), pages 1-17, December.
    3. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    5. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Silviu Nate & Yuriy Bilan & Mariia Kurylo & Olena Lyashenko & Piotr Napieralski & Ganna Kharlamova, 2021. "Mineral Policy within the Framework of Limited Critical Resources and a Green Energy Transition," Energies, MDPI, vol. 14(9), pages 1-32, May.
    7. Verburg, René W. & Verberne, Emma & Negro, Simona O., 2022. "Accelerating the transition towards sustainable agriculture: The case of organic dairy farming in the Netherlands," Agricultural Systems, Elsevier, vol. 198(C).
    8. Zhou, Hao & Lai, Zhenya & Cen, Kefa, 2022. "Experimental study on energy storage performances of packed bed with different solid materials," Energy, Elsevier, vol. 246(C).
    9. Fernandez Vazquez, Carlos A.A. & Vansighen, Thomas & Fernandez Fuentes, Miguel H. & Quoilin, Sylvain, 2024. "Energy transition implications for Bolivia. Long-term modelling with short-term assessment of future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Stringer, Thomas & Joanis, Marcelin, 2022. "Assessing energy transition costs: Sub-national challenges in Canada," Energy Policy, Elsevier, vol. 164(C).
    11. Ram, Manish & Gulagi, Ashish & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Energy transition in megacities towards 100% renewable energy: A case for Delhi," Renewable Energy, Elsevier, vol. 195(C), pages 578-589.
    12. Briera, Thibault & Lefèvre, Julien, 2024. "Reducing the cost of capital through international climate finance to accelerate the renewable energy transition in developing countries," Energy Policy, Elsevier, vol. 188(C).
    13. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    14. Mario Cascetta & Fabio Serra & Simone Arena & Efisio Casti & Giorgio Cau & Pierpaolo Puddu, 2016. "Experimental and Numerical Research Activity on a Packed Bed TES System," Energies, MDPI, vol. 9(9), pages 1-13, September.
    15. Pitié, F. & Zhao, C.Y. & Baeyens, J. & Degrève, J. & Zhang, H.L., 2013. "Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles," Applied Energy, Elsevier, vol. 109(C), pages 505-513.
    16. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
    17. Galván, Antonio & Haas, Jannik & Moreno-Leiva, Simón & Osorio-Aravena, Juan Carlos & Nowak, Wolfgang & Palma-Benke, Rodrigo & Breyer, Christian, 2022. "Exporting sunshine: Planning South America’s electricity transition with green hydrogen," Applied Energy, Elsevier, vol. 325(C).
    18. Gao, Xue & Zhang, Yi, 2022. "What is behind the globalization of technology? Exploring the interplay of multi-level drivers of international patent extension in the solar photovoltaic industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    19. Gimeno-Furio, A. & Hernandez, L. & Martinez-Cuenca, R. & Mondragón, R. & Vela, A. & Cabedo, L. & Barreneche, C. & Iacob, M., 2020. "New coloured coatings to enhance silica sand absorbance for direct particle solar receiver applications," Renewable Energy, Elsevier, vol. 152(C), pages 1-8.
    20. Guo, Zhi & Mao, Xianqiang & Lu, Jianhong & Gao, Yubing & Chen, Xing & Zhang, Shining & Ma, Zhiyuan, 2024. "Can a new power system create more employment in China?," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.